EFFICIENT AND SIMPLE GIBBS STATE PREPARATION OF THE 2D TORIC CODE VIA DUALITY TO CLASSICAL ISING CHAINS

Based on

arXiv:2504.17405

with

Pablo Páez-Velasco (UC Madrid)

Niclas Schilling (U. Tübingen)

Samuel Scalet (U. Cambridge)

Frank Verstraete (U. Cambridge)

Summer School in Quantum Matter, Granada, 5th September 2025

INTRODUCTION TO QUANTUM GIBBS SAMPLING

- Spin lattice: $\Lambda \subset \mathbb{Z}^D$
- Hilbert space associated with $\Lambda: \mathcal{H}_{\Lambda} = \bigotimes \mathcal{H}_{x} \equiv \bigotimes \mathbb{C}^{d}$

- ullet Spin lattice: $\Lambda \subset \mathbb{Z}^D$
- Hilbert space associated with $\Lambda: \mathcal{H}_{\Lambda} = \bigotimes \mathcal{H}_{x} \equiv \bigotimes \mathbb{C}^{d}$
- Density matrices: $\mathcal{S}_{\Lambda}:=\mathcal{S}(\mathcal{H}_{\Lambda})=\{\rho\in\mathcal{B}(\mathcal{H}_{\Lambda}): \rho\geq 0, \ \mathrm{tr}[\rho]=1\}$

- Hamiltonian: $H_{\Lambda} = \sum_{X \subset \Lambda} H_X$
- Finite-range (k-local interactions): $\begin{cases} H_X = 0 \text{ for diam}(X) > k \\ \|H_X\| < J \quad \forall X \subset \Lambda \end{cases}$

- ullet Spin lattice: $\Lambda\subset\subset\mathbb{Z}^D$
- Hilbert space associated with $\Lambda: \mathcal{H}_{\Lambda} = \bigotimes \mathcal{H}_{x} \equiv \bigotimes \mathbb{C}^{d}$

• Finite-range (k-local interactions): $\begin{cases} H_X = 0 \text{ for diam}(X) > k \\ ||H_X|| < J \quad \forall X \subset \Lambda \end{cases}$

• Commuting: $[H_X, H_Y] = 0 \ \forall X, Y \subset \Lambda$

- ullet Spin lattice: $\Lambda \subset \mathbb{Z}^D$
- Hilbert space associated with $\Lambda: \mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_{x} \equiv \bigotimes_{x \in \Lambda} \mathbb{C}^{d}$

- Finite-range (k-local interactions): $\begin{cases} H_X = 0 \text{ for } \dim(X) > k \\ \|H_X\| < J \quad \forall X \subset \Lambda \end{cases}$
- Commuting: $[H_X, H_Y] = 0 \ \forall X, Y \subset \Lambda$

GIBBS SAMPLING / PREPARATION OF GIBBS STATES

$$H_{\Lambda} = \sum_{X \subset \Lambda} H_X$$

$$\rho := \frac{e^{-\beta H_{\Lambda}}}{\mathsf{Tr}[e^{-\beta H_{\Lambda}}]}$$

$$\mathcal{H}_x=\mathbb{C}^d$$

GIBBS SAMPLING / PREPARATION OF GIBBS STATES

$$H_{\Lambda} = \sum_{X \subset \Lambda} H_{X} \qquad \rho := \frac{e^{-\beta H_{\Lambda}}}{\mathsf{Tr}[e^{-\beta H_{\Lambda}}]} \qquad \frac{\mathcal{H}_{x} = \mathbb{C}^{d}}{\mathsf{Tr}[e^{-\beta H_{\Lambda}}]}$$

$$\mathbf{G} \Rightarrow \mathbf{G} \Rightarrow \mathbf{G$$

How do we do Gibbs sampling?

GIBBS SAMPLING / PREPARATION OF GIBBS STATES

$$H_{\Lambda} = \sum_{X \subset \Lambda} H_X \quad \rho := \frac{e^{-\beta H_{\Lambda}}}{\mathsf{Tr}[e^{-\beta H_{\Lambda}}]}$$

How do we do Gibbs sampling?

• A typical way is via dissipation.

$$H_{\Lambda} = \sum_{X \subset \Lambda} H_X \quad \rho := \frac{e^{-\beta H_{\Lambda}}}{\mathsf{Tr}[e^{-\beta H_{\Lambda}}]}$$

$$H_{\Lambda} = \sum_{X \subset \Lambda} H_X \quad \rho := \frac{e^{-\beta H_{\Lambda}}}{\mathsf{Tr}[e^{-\beta H_{\Lambda}}]}$$

- The dynamics of the system is dissipative!
- The continuous-time evolution of a state in the system is given by a Quantum Markov Semigroup (Markovian approximation)

$$H_{\Lambda} = \sum_{X \subset \Lambda} H_X \quad \rho := \frac{e^{-\beta H_{\Lambda}}}{\mathsf{Tr}[e^{-\beta H_{\Lambda}}]}$$

- The dynamics of the system is dissipative!
- The continuous-time evolution of a state in the system is given by a Quantum Markov Semigroup (Markovian approximation)
 - Lindbladian: $\mathcal L$ describes the dynamics of the system and $\mathcal L(\rho)=0$
 - Given $\sigma \in \mathcal{S}(\mathcal{H}_{\Lambda})$

$$e^{t\mathcal{L}}(\sigma) \stackrel{t \to \infty}{\longrightarrow} \rho$$

$$H_{\Lambda} = \sum_{X \subset \Lambda} H_X \quad \rho := \frac{e^{-\beta H_{\Lambda}}}{\mathsf{Tr}[e^{-\beta H_{\Lambda}}]}$$

- The dynamics of the system is dissipative!
- The continuous-time evolution of a state in the system is given by a Quantum Markov Semigroup (Markovian approximation)
 - Lindbladian: $\mathcal L$ describes the dynamics of the system and $\mathcal L(\rho)=0$
 - Given $\sigma \in \mathcal{S}(\mathcal{H}_{\Lambda})$ $e^{t\mathcal{L}}(\sigma) \stackrel{t o \infty}{\longrightarrow} \rho$
- Dissipative quantum state engineering: Robust way of engineering relevant quantum states and algorithms

EFFICIENT GIBBS SAMPLING WITH DISSIPATION

• Given $\sigma \in \mathcal{S}(\mathcal{H}_{\Lambda})$ $e^{t\mathcal{L}}(\sigma) \stackrel{t \to \infty}{\longrightarrow} \rho$

EFFICIENT GIBBS SAMPLING WITH DISSIPATION

• Given
$$\sigma \in \mathcal{S}(\mathcal{H}_{\Lambda})$$
 $e^{t\mathcal{L}}(\sigma) \stackrel{t \to \infty}{\longrightarrow} \rho$

Efficient preparation of Gibbs states

When do we have $\|\mathbf{e}^{t\mathcal{L}}(\sigma) - \rho\|_1 \leq \varepsilon$?

EFFICIENT GIBBS SAMPLING WITH DISSIPATION

• Given
$$\sigma \in \mathcal{S}(\mathcal{H}_{\Lambda})$$
 $e^{t\mathcal{L}}(\sigma) \stackrel{t \to \infty}{\longrightarrow} \rho$

Efficient preparation of Gibbs states

When do we have $\|\mathbf{e}^{t\mathcal{L}}(\sigma) - \rho\|_1 \leq \varepsilon$?

Ingredients

- 1. Efficient implementation of the Lindbladian
- 2. Rapid/fast mixing of the evolution

EFFICIENT IMPLEMENTATION OF THE LINDBLADIAN

$$e^{t\mathcal{L}}(\sigma) \xrightarrow{t \to \infty} \rho$$

1. Commuting case: Efficient implementation of Davies generator

[Rall, Wang, Wocjan, Quantum'23] [Li, Wang ICALP'23]

2. Non-commuting case: Efficient implementation of the CKG generator

[Chen, Kastoryano, Gilyén, arXiv:2311.09207]

EFFICIENT IMPLEMENTATION OF THE LINDBLADIAN

Number of qubits: $|\Lambda|$

$$e^{t\mathcal{L}}(\sigma) \xrightarrow{t \to \infty} \rho$$

1. Commuting case: Efficient implementation of Davies generator

[Rall, Wang, Wocjan, Quantum'23] [Li, Wang ICALP'23]

Circuit complexity: $\mathcal{O}(|\Lambda|^2 \text{polylog} |\Lambda|)$ Circuit depth: $\mathcal{O}(|\Lambda| \text{polylog} |\Lambda|)$

2. Non-commuting case: Efficient implementation of the CKG generator

[Chen, Kastoryano, Gilyén, arXiv:2311.09207]

Circuit complexity: $\mathcal{O}(|\Lambda|^2 \text{polylog} |\Lambda|)$ Circuit depth: $\mathcal{O}(|\Lambda| \text{polylog} |\Lambda|)$

RAPID/FAST MIXING OF THE EVOLUTION

1. Commuting case:

• 1D, TI, any positive temperature, rapid mixing

[Bardet, AC, Gao, Lucia, Pérez-García, Rouzé, CMP'23 and PRL'23]

- High D, 2-local, under decay of correlations + gap, rapid mixing
 [Kochanowski, Alhambra, AC, Rouzé, CMP'25]
- High D, K-local, under decay of MCMI + gap, rapid mixing

 [AC, Gondolf, Kochanowski, Rouzé, arXiv:2412.017322]
- 2D, quantum double models, fast mixing [Lucia, Pérez-García, Pérez-Hernández, FMS'23]
- CSS codes in 2D, and in 3D 1/2, rapid mixing

 [Stengele, AC, Gao, Lucia, Pérez-García, Pérez-Hernández, Rouzé, Warzel, in preparation]

2. Non-commuting case: Any dimension, high-enough temperature, rapid mixing

[Rouzé, Stilck França, Alhambra, arXiv:2403.12691 and arXiv:2411.04885]

RAPID/FAST MIXING OF THE EVOLUTION

1. Commuting case:

• 1D, TI, any positive temperature, rapid mixing

[Bardet, AC, Gao, Lucia, Pérez-García, Rouzé, CMP'23 and PRL'23]

• High D, 2-local, under decay of correlations + gap, rapid mixing [Kochanowski, Alhambra, AC, Rouzé, CMP'25]

• High D, k-local, under decay of MCMI + gap, rapid mixing

[AC, Gondolf, Kochanowski, Rouzé, arXiv:2412.017322]

• 2D, quantum double models, fast mixing

[Lucia, Pérez-García, Pérez-Hernández, FMS'23]

• CSS codes in 2D, and in 3D 1/2, rapid mixing

[Stengele, AC, Gao, Lucia, Pérez-García, Pérez-Hernández, Rouzé, Warzel, in preparation]

Mixing time: $\mathscr{O}(\mathsf{polylog}\,|\Lambda|)$ for rapid mixing, $\mathscr{O}(\sqrt{|\Lambda|}\log|\Lambda|)$ for fast mixing

2. Non-commuting case: Any dimension, high-enough temperature, rapid mixing

[Rouzé, Stilck França, Alhambra, arXiv:2403.12691 and arXiv:2411.04885]

• Given
$$\sigma \in \mathcal{S}(\mathcal{H}_{\Lambda})$$
 $e^{t\mathcal{L}}(\sigma) \stackrel{t o \infty}{\longrightarrow} \rho$

Efficient preparation of Gibbs states

When do we have $\|\mathbf{e}^{t\mathcal{L}}(\sigma) - \rho\|_1 \leq \varepsilon$?

Ingredients

- 1. Efficient implementation of the Lindbladian
- 2. Rapid/fast mixing of the evolution

• Given
$$\sigma \in \mathcal{S}(\mathcal{H}_{\Lambda})$$
 $e^{t\mathcal{L}}(\sigma) \stackrel{t \to \infty}{\longrightarrow} \rho$

Efficient preparation of Gibbs states

When do we have $\|\mathbf{e}^{t\mathcal{L}}(\sigma) - \rho\|_1 \leq \varepsilon$?

Ingredients

- 2. Rapid/fast mixing of the evolution $\frac{\mathcal{O}(\text{polylog}\,|\,\Lambda|) \text{ for rapid mixing,} }{\mathcal{O}(\sqrt{|\Lambda|}\log|\Lambda|) \text{ for fast mixing.} }$

When do we have $\|\mathbf{e}^{t\mathcal{L}}(\sigma) - \rho\|_1 \leq \varepsilon$?

Ingredients

- 1. Efficient implementation of the Lindbladian $\;\;$ Circuit depth: $\mathcal{O}(|\Lambda| \, \mathsf{polylog} \, |\Lambda|)$
- 2. Rapid/fast mixing of the evolution $\frac{\mathcal{O}(\text{polylog} | \Lambda|) \text{ for rapid mixing,} }{\mathcal{O}(\sqrt{|\Lambda|} \log |\Lambda|) \text{ for fast mixing.} }$

Both cases yield a circuit depth of at most $\mathcal{O}(|\Lambda|^{3/2} \text{polylog}|\Lambda|)$ to prepare the Gibbs state

When do we have $\|\mathbf{e}^{t\mathcal{L}}(\sigma) - \rho\|_1 \leq \varepsilon$?

Ingredients

- 1. Efficient implementation of the Lindbladian $\;\;$ Circuit depth: $\mathcal{O}(|\Lambda| \, \mathsf{polylog} \, |\Lambda|)$
- 2. Rapid/fast mixing of the evolution $\frac{\mathcal{O}(\text{polylog} | \Lambda|) \text{ for rapid mixing,} }{\mathcal{O}(\sqrt{|\Lambda|} \log |\Lambda|) \text{ for fast mixing.} }$

Both cases yield a circuit depth of at most $\mathcal{O}(|\Lambda|^{3/2} \text{polylog}|\Lambda|)$ to prepare the Gibbs state

Caveat: The mixing time depends exponentially on $\beta!$

When do we have $\|\mathbf{e}^{t\mathcal{L}}(\sigma) - \rho\|_1 \leq \varepsilon$?

Ingredients

- 1. Efficient implementation of the Lindbladian $\;\;$ Circuit depth: $\mathcal{O}(|\Lambda| \, \mathsf{polylog} \, |\Lambda|)$
- 2. Rapid/fast mixing of the evolution $\mathcal{O}(\text{polylog}|\Lambda|)$ for rapid mixing, $\mathcal{O}(\sqrt{|\Lambda|\log|\Lambda|})$ for fast mixing.

Both cases yield a circuit depth of at most $\mathcal{O}(|\Lambda|^{3/2} \text{polylog} |\Lambda|)$ to prepare the Gibbs state

Caveat: The mixing time depends exponentially on $\beta!$

Here we explore another simpler approach for specific models

QUANTUM GIBBS SAMPLING VIA DUALITY

Consider H_1 and H_2 two Hamiltonians.

We say that they are poly-depth dual if there exists a unitary U that can be implemented by a circuit (of 2-local gates) of polynomial depth such that $H_1=UH_2U^\dagger\;.$

Consider H_1 and H_2 two Hamiltonians.

We say that they are poly-depth dual if there exists a unitary U that can be implemented by a circuit (of 2-local gates) of polynomial depth such that $H_1=UH_2U^\dagger\;.$

Define
$$\rho_1 = \frac{e^{-\beta H_1}}{\text{Tr}[e^{-\beta H_1}]} \quad \text{and} \quad \rho_2 = \frac{e^{-\beta H_2}}{\text{Tr}[e^{-\beta H_2}]} \,.$$

Consider H_1 and H_2 two Hamiltonians.

We say that they are poly-depth dual if there exists a unitary U that can be implemented by a circuit (of 2-local gates) of polynomial depth such that $H_1=UH_2U^\dagger\;.$

Define
$$\rho_1 = \frac{e^{-\beta H_1}}{\text{Tr}[e^{-\beta H_1}]} \quad \text{and} \quad \rho_2 = \frac{e^{-\beta H_2}}{\text{Tr}[e^{-\beta H_2}]} \,.$$

Then,
$$\rho_1 = U \rho_2 U^\dagger$$
 .

Consider H_1 and H_2 two Hamiltonians.

We say that they are poly-depth dual if there exists a unitary U that can be implemented by a circuit (of 2-local gates) of polynomial depth such that $H_1=UH_2U^\dagger\;.$

Define
$$\rho_1=rac{e^{-eta H_1}}{{
m Tr}[e^{-eta H_1}]}$$
 and $\rho_2=rac{e^{-eta H_2}}{{
m Tr}[e^{-eta H_2}]}$. Then, $\rho_1=U\rho_2 U^\dagger$.

Therefore, if ρ_1 can be efficiently sampled, ρ_2 as well.

Consider H_1 and H_2 two poly-depth dual Hamiltonians with $H_1=UH_2U^\dagger$ and $\rho_1=U\rho_2U^\dagger$

Assume that ho_1 can be efficiently sampled with $\mathscr C$.

Consider H_1 and H_2 two poly-depth dual Hamiltonians with $H_1=UH_2U^\dagger$ and $\rho_1=U\rho_2U^\dagger$

Assume that ho_1 can be efficiently sampled with $\mathscr C$.

Then ho_2 can be efficiently sampled with $U\mathscr{C}$.

Time

QUANTUM GIBBS SAMPLING VIA DUALITY

Consider H_1 and H_2 two poly-depth dual Hamiltonians with $H_1=UH_2U^\dagger$ and $\rho_1=U\rho_2U^\dagger$

Assume that ho_1 can be efficiently sampled with $\mathscr C$.

Then ho_2 can be efficiently sampled with $U\mathscr{C}$.

Ingredients. For a relevant Hamiltonian H_2 :

- 1. Find a poly-depth circuit mapping it to H_{1}
- 2. Find an efficient sampler for ρ_1

EXAMPLE: 1D ISING CHAIN

CLASSICAL 1D ISING CHAIN (OF LENGTH L)

EXAMPLE: 1D ISING CHAIN

CLASSICAL 1D ISING CHAIN (OF LENGTH L)

$$H = -\sum_{i=1}^{L-1} J_i \sigma_z^i \sigma_z^{i+1}$$

NON-INTERACTING HAMILTONIAN (OF LENGTH L)

$$UHU^{\dagger} = -\sum_{i=2}^{L} J_{i-1}\sigma_z^i$$

EXAMPLE: 1D ISING CHAIN

CLASSICAL 1D ISING CHAIN (OF LENGTH L)

$$H = -\sum_{i=1}^{L-1} J_i \sigma_z^i \sigma_z^{i+1}$$

$$U := CX(1,2)CX(2,3)\cdots CX(L-1,L)$$

$$CX = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{pmatrix}$$

NON-INTERACTING HAMILTONIAN (OF LENGTH L)

$$UHU^{\dagger} = -\sum_{i=2}^{L} J_{i-1}\sigma_z^i \quad \bullet$$

EXAMPLE: 1D ISING CHAIN

CLASSICAL 1D ISING CHAIN (OF LENGTH L)

$$H = -\sum_{i=1}^{L-1} J_i \sigma_z^i \sigma_z^{i+1}$$

$$U := CX(1,2) CX(2,3) \cdots CX(L-1,L)$$

NON-INTERACTING HAMILTONIAN (OF LENGTH L)

$$UHU^{\dagger} = -\sum_{i=2}^{L} J_{i-1}\sigma_z^i$$

EXAMPLE: 1D ISING CHAIN

CLASSICAL 1D ISING CHAIN

(OF LENGTH L)

$$H = -\sum_{i=1}^{L-1} J_i \sigma_z^i \sigma_z^{i+1}$$

NON-INTERACTING HAMILTONIAN (OF LENGTH L)

$$UHU^{\dagger} = -\sum_{i=2}^{L} J_{i-1}\sigma_z^i.$$

$$\frac{e^{-\beta UHU^\dagger}}{{\rm Tr}[e^{-\beta UHU^\dagger}]} \ {\rm can \ be \ sampled \ in} \ \mathcal{O}(1) \, .$$

EXAMPLE: 1D ISING CHAIN

CLASSICAL 1D ISING CHAIN

(OF LENGTH L)

$$H = -\sum_{i=1}^{L-1} J_i \sigma_z^i \sigma_z^{i+1}$$

NON-INTERACTING HAMILTONIAN (OF LENGTH L)

$$UHU^{\dagger} = -\sum_{i=2}^{L} J_{i-1}\sigma_z^i$$

$$\frac{e^{-\beta H}}{{\rm Tr}[e^{-\beta H}]} \ {\rm can \ be \ sampled \ in} \ \mathcal{O}(L) \ .$$

$$\mathcal{O}(L)$$
 depth

$$\frac{e^{-\beta UHU^\dagger}}{{\rm Tr}[e^{-\beta UHU^\dagger}]} \ {\rm can \ be \ sampled \ in} \ \mathcal{O}(1) \, .$$

2D TORIC CODE

Geometry

plaquette

Interactions

Hamiltonian

$$H_{TC} = -\sum_{v \in V_L} J_v A_v - \sum_{p \subset \mathcal{E}_L} J_p B_p$$

$$A_v := \bigotimes_{i \in \partial v} \sigma_x^i, \quad B_p := \bigotimes_{i \in p} \sigma_z^i.$$

2D TORIC CODE

Geometry

Interactions

Hamiltonian

$$H_{TC} = -\sum_{v \in V_L} J_v A_v - \sum_{p \subset \mathcal{E}_L} J_p B_p$$

$$A_v := \bigotimes_{i \in \partial v} \sigma_x^i, \quad B_p := \bigotimes_{i \in p} \sigma_z^i.$$

MAIN RESULT For the 2D Toric Code in an $L\times L$ lattice, there exists a quantum circuit C composed of $\mathcal{O}(L^3)$ CX gates and $\mathcal{O}(L^2)$ Hadamard gates such that

$$C\Big(\sum_{v \in V_L} J_v A_v\Big) C^{\dagger} \text{ and } C\Big(\sum_{p \in \mathscr{E}_L} J_p B_p\Big) C^{\dagger}$$

correspond to 2 disjoint 1D Ising chains.

MAIN RESULT For the 2D Toric Code in an $L\times L$ lattice, there exists a quantum circuit C composed of $\mathcal{O}(L^3)$ CX gates and $\mathcal{O}(L^2)$ Hadamard gates such that

$$C\Big(\sum_{v \in V_L} J_v A_v\Big) C^{\dagger} \text{ and } C\Big(\sum_{p \in \mathscr{C}_L} J_p B_p\Big) C^{\dagger}$$

correspond to 2 disjoint 1D Ising chains.

MAIN RESULT

For the 2D Toric Code in an $L\times L$ lattice, there exists a quantum circuit C of complexity $\mathcal{O}(L^3)$ such that

$$C\Big(\sum_{v \in V_L} J_v A_v\Big) C^{\dagger} \text{ and } C\Big(\sum_{p \in \mathscr{E}_L} J_p B_p\Big) C^{\dagger}$$

correspond to 2 disjoint 1D Ising chains.

CONSEQUENCE

The ground and Gibbs state of the 2D Toric Code can be prepared with a gate complexity of $\mathcal{O}(L^3)$ for any $0 \le \beta \le \infty$.

STEPS OF THE PROOF

STEPS OF THE PROOF

Some of the steps:

- Layer of Hadamard gates
- CX gates

STEPS OF THE PROOF

Some of the steps:

- Layer of Hadamard gates
- CX gates

STEPS OF THE PROOF

Some of the steps:

- Layer of Hadamard gates
- CX gates

STEPS OF THE PROOF

After this, we have two decoupled systems:

STEPS OF THE PROOF

Final plaquette interactions:

Final star interactions:

STEPS OF THE PROOF

Representation of the final interactions:

STEPS OF THE PROOF

After some more CX gates:

STEPS OF THE PROOF

Final step: In each of these geometries, we get one interaction on all sites and magnetic fields in all sites. This is easily mapped to 2 Ising chains.

MAIN RESULT

For the 2D Toric Code in an $L\times L$ lattice, there exists a quantum circuit C of complexity $\mathcal{O}(L^3)$ such that

$$C\Big(\sum_{v \in V_L} J_v A_v\Big) C^{\dagger} \text{ and } C\Big(\sum_{p \in \mathcal{E}_L} J_p B_p\Big) C^{\dagger}$$

correspond to 2 disjoint 1D Ising chains.

CONSEQUENCE

The ground and Gibbs state of the 2D Toric Code can be prepared with a gate complexity of $\mathcal{O}(L^3)$ for any $0 \le \beta \le \infty$.

CSS CODE

$$\text{Hamiltonian } -\sum_{v \in V_L} J_v A_v - \sum_{p \subset \mathcal{E}_L} J_p B_p \qquad \qquad A_v := \bigotimes_{i \in \partial v} \sigma_x^i, \quad B_p := \bigotimes_{i \in p} \sigma_z^i.$$

with more general geometries.

CSS CODE

$$\text{Hamiltonian } -\sum_{v \in V_L} J_v A_v - \sum_{p \subset \mathcal{E}_L} J_p B_p \qquad \qquad A_v := \bigotimes_{i \in \partial v} \sigma_x^i, \quad B_p := \bigotimes_{i \in p} \sigma_z^i.$$

with more general geometries.

Commuting Pauli operators

$$H = \sum_{i=1}^{m} \alpha_i H_i$$

with $\{H_i\}$ a collection of mutually orthogonal Pauli strings.

$$H = \sum_{i=1}^{m} \alpha_i H_i$$

Result

The $\{H_i\}$ can be simultaneously diagonalised with a quantum circuit of cuadratic depth.

[van den Berg, Temme, Quantum'20]

[Aaronson, Gottesman, PRA'04]

$$H = \sum_{i=1}^{m} \alpha_i H_i$$

Result

The $\{H_i\}$ can be simultaneously diagonalised with a quantum circuit of cuadratic depth.

[van den Berg, Temme, Quantum'20]

[Aaronson, Gottesman, PRA'04]

Idea of the proof

Write interactions of the Hamiltonian in a tableau:

Operator	x_{ij}	z_{ij}
σ_x	1	0
σ_z	0	1
σ_y	1	1
1	0	0

$$\begin{array}{c|c} \text{Sites} \\ \hline \\ \text{Interactions} \longrightarrow \begin{pmatrix} X & Z & s \end{pmatrix} \end{array}$$

$$H = \sum_{i=1}^{m} \alpha_i H_i$$

Result

The $\{H_i\}$ can be simultaneously diagonalised with a quantum circuit of cuadratic depth.

[van den Berg, Temme, Quantum'20]

[Aaronson, Gottesman, PRA'04]

Idea of the proof

Write interactions of the Hamiltonian in a tableau:

Operator	x_{ij}	z_{ij}
σ_x	1	0
σ_z	0	1
σ_y	1	1
1	0	0

Result

$$H = \sum_{i=1}^{m} \alpha_i H_i$$

The $\{H_i\}$ can be simultaneously diagonalised with a quantum circuit of cuadratic depth.

Idea of the proof

Write interactions of the Hamiltonian in a tableau:

Operator	x_{ij}	z_{ij}	Sites
σ_x	1	0	
σ_z	0	1	
σ_y	1	1	Interactions \longrightarrow $X Z S$
1	0	0	

Then, the aim is to reduce the X part of the matrix to all 0s and analyse the remaining Z part.

Result

$$H = \sum_{i=1}^{m} \alpha_i H_i$$

The $\{H_i\}$ can be simultaneously diagonalised with a quantum circuit of cuadratic depth.

Idea of the proof

Write interactions of the Hamiltonian in a tableau:

Then, the aim is to reduce the X part of the matrix to all 0s and analyse the remaining Z part.

For these models, this is done with CX, Hadamard and Phase gates in $\mathcal{O}(n^2)$ depth.

Result

$$H = \sum_{i=1}^{m} \alpha_i H_i$$

The $\{H_i\}$ can be simultaneously diagonalised with a quantum circuit of cuadratic depth.

These shows that all Hamiltonians composed of commuting Pauli operators are poly-depth dual to classical Hamiltonians.

Now the question is: To which classical Hamiltonians?

Example

$$H = \sum_{i=1}^{m} \alpha_i H_{i}$$

If a tableau is achieved with Z part like

$$egin{pmatrix} {f I} & {f O} & 00 \\ \hline 1 & 0 & \vdots \\ \hline 1 \cdots 1 & 0 \cdots 0 & \vdots \\ \hline {f O} & {f I} & \vdots \\ \hline 0 \cdots 0 & 1 \cdots 1 & 00 \end{pmatrix}$$

these are two decoupled 1D Ising models and two spins without interactions.

Example

$$H = \sum_{i=1}^{m} \alpha_i H_{i}$$

If a tableau is achieved with Z part like

$$egin{pmatrix} {f I} & {f O} & 00 \\ \hline 1 & 0 & \vdots \\ \hline 1 \cdots 1 & 0 \cdots 0 & \vdots \\ \hline {f O} & {f I} & \vdots \\ \hline 0 \cdots 0 & 1 \cdots 1 & 00 \end{pmatrix}$$

these are two decoupled 1D Ising models and two spins without interactions.

This is achieved from a 2D Toric Code.

Original model	Lattice	Hamiltonian	Dual model	
2D toric code		$-\sum A_{i} \sigma_{x} \frac{\sigma_{x}}{\sigma_{x}} \frac{\sigma_{z}}{\sigma_{x}} \frac{\sigma_{z}}{\sigma_{z}} \frac{\sigma_{z}}{\sigma_{z}}$	Two decoupled Ising chains	Periodic boundary conditions
Rotated surface code		$X \longrightarrow X \qquad Z \longrightarrow Z$ $-\sum A_i \qquad \qquad -\sum B_i \qquad \qquad $ $X \longrightarrow X \qquad Z \longrightarrow Z$ $X \qquad -\sum C_i \qquad -\sum D_i \ Z \longrightarrow Z$ $X \qquad X \qquad Z \longrightarrow Z$	Non-interacting, single-spin Hamiltonian	Open boundary conditions
2D color code on a honeycomb lattice		$-\sum A_{i} \begin{vmatrix} \sigma_{x} & \sigma_{x} & \sigma_{z} \\ -\sum A_{i} & \sigma_{x} & \sigma_{z} \end{vmatrix} - \sum B_{i} \begin{vmatrix} \sigma_{z} & \sigma_{z} \\ \sigma_{z} & \sigma_{z} \end{vmatrix}$	Two decoupled lasso Ising chains if or non-interacting, single-spin Hamiltonian.	Periodic boundary conditions

Original model	Lattice	Hamiltonian	Dual model
2D toric code		$-\sum A_{i} \sigma_{x} \xrightarrow{\sigma_{x}} \sigma_{x} - \sum B_{i} \sigma_{z} \xrightarrow{\sigma_{z}} \sigma_{z}$ σ_{x}	Two decoupled Ising chains
Rotated surface code		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Non-interacting, single-spin
2D color code on a honeycomb lattice		$-\sum A_{i} \begin{vmatrix} \sigma_{x} & \sigma_{x} \\ \sigma_{x} & \sigma_{x} \end{vmatrix} - \sum B_{i}$	

,	Original model	Lattice	Hamiltonian	Dual model	
	Haah's Code		$-\sum_{I} A_{i} \begin{bmatrix} I\sigma_{\overline{z}} & \sigma_{z}I \\ II & \sigma_{z}\sigma_{z} \end{bmatrix} - \sum_{I} B_{i} \begin{bmatrix} \sigma_{x} & \sigma_{x}I \\ \sigma_{x}\sigma_{x} & II \end{bmatrix} = \begin{bmatrix} I\sigma_{x} & \sigma_{x}I \\ \sigma_{x}\sigma_{x} & II \end{bmatrix} = \begin{bmatrix} I\sigma_{x} & \sigma_{x}I \\ \sigma_{x}\sigma_{x} & II \end{bmatrix}$	Two decoupled Ising chains	Periodic boundary conditions
	$^{ m 3D\ toric}_{ m code}$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ising chain decoupled from a classical local model with constant degree interaction graph	Periodic boundary conditions
	X-cube		$-\sum A_{i} \begin{array}{c c} \sigma_{x} & \sigma_{x} \\ \hline -\sum C_{i} & \sigma_{z} \\ \hline \sigma_{z} & \sigma_{z} \\ \hline \end{array} - \sum D_{i} \begin{array}{c c} \sigma_{z} \\ \hline \sigma_{z} \\ \hline \sigma_{z} \\ \hline \end{array}$	L decoupled Ising chains and $L-1$ 1D decoupled nearest-neighbor systems	Cylindrica boundary conditions

Original model	Lattice	Hamiltonian	Dual model	
Commuting checks subsystem toric code		$-\sum A_i \qquad \sigma_x \qquad -\sum B_i \qquad \sigma_z \qquad \sigma_z$	L^3 decoupled 3-spin Ising chains	Periodic boundary conditions
Stabilizers subsystem toric code		$-\sum_{\sigma_{x}} A_{i} \sigma_{x} \sigma_{x} \sigma_{x} \sigma_{x} \sigma_{z} \sigma$	Two decoupled Ising chains	Periodic boundary conditions

Original model	Lattice	Hamiltonian	Dual model	
Commuting checks subsystem toric code		$-\sum A_i \qquad \sigma_x \qquad -\sum B_i \qquad \sigma_z \qquad \sigma_z$	L^3 decoupled 3-spin Ising chains	Periodic boundary conditions
Stabilizers subsystem toric code		$-\sum_{\sigma_{x}} A_{i} \begin{array}{cccccccccccccccccccccccccccccccccccc$	Two decoupled Ising chains	Periodic boundary conditions

This is proven algorithmically for system sizes of order up to 10^5 qubits and conjectured in general.

Original model	Lattice	Hamiltonian	Dual model	
Commuting checks subsystem toric code		$-\sum A_i \qquad \sigma_x \qquad -\sum B_i \qquad \sigma_z \qquad \sigma_z$	L^3 decoupled 3-spin Ising chains	Periodic boundary conditions
Stabilizers subsystem toric code		$-\sum_{\sigma_{x}} A_{i} \begin{array}{cccccccccccccccccccccccccccccccccccc$	Two decoupled Ising chains	Periodic boundary conditions

Consequence: All these models can be efficiently sampled for any $0<\beta\leq\infty$, except for the 3D toric code, for which we only have efficient sampling at $0<\beta\leq\beta_*$.

$$\text{Lindbladian} \qquad \mathcal{L}(\rho) = -i[H,\rho] + \sum_k \gamma_k \left[L_k \rho L_k^\dagger - \frac{1}{2} \{ L_k^\dagger L_k, \rho \} \right]$$

$$\text{Lindbladian} \qquad \mathcal{L}(\rho) = -i[H,\rho] + \sum_{k} \gamma_{k} \left[L_{k} \rho L_{k}^{\dagger} - \frac{1}{2} \{ L_{k}^{\dagger} L_{k}, \rho \} \right]$$

Consider the dual Lindbladian $\widetilde{\mathcal{L}}:=\operatorname{Ad}_U\circ\mathcal{L}\circ\operatorname{Ad}_{U^\dagger}$ with $\operatorname{Ad}_U(X):=UXU^\dagger$

$$\text{Lindbladian} \qquad \mathcal{L}(\rho) = -i[H,\rho] + \sum_k \gamma_k \left[L_k \rho L_k^\dagger - \frac{1}{2} \{ L_k^\dagger L_k, \rho \} \right]$$

Consider the dual Lindbladian $\widetilde{\mathcal{L}}:=\operatorname{Ad}_U\circ\mathcal{L}\circ\operatorname{Ad}_{U^\dagger}$ with $\operatorname{Ad}_U(X):=UXU^\dagger$

Then:

- If σ is the unique fixed point of \mathscr{L} , $\widetilde{\sigma} = U \sigma U^{\dagger}$ is the unique fixed point of $\widetilde{\mathscr{L}}$.
- ullet The spectral gap, MLSI and mixing time of ${\mathscr L}$ coincide with those of ${\mathscr L}.$

$$\text{Lindbladian} \qquad \mathcal{L}(\rho) = -i[H,\rho] + \sum_k \gamma_k \left[L_k \rho L_k^\dagger - \frac{1}{2} \{ L_k^\dagger L_k, \rho \} \right]$$

Consider the dual Lindbladian $\widetilde{\mathcal{L}}:=\operatorname{Ad}_U\circ\mathcal{L}\circ\operatorname{Ad}_{U^\dagger}$ with $\operatorname{Ad}_U(X):=UXU^\dagger$

- ullet If ho is the unique fixed point of \mathscr{L} , $\widetilde{
 ho}=U
 ho U^\dagger$ is the unique fixed point of \mathscr{L} .
- ullet The spectral gap, MLSI and mixing time of ${\mathscr L}$ coincide with those of ${\mathscr L}.$

$$\begin{aligned} \|e^{t\mathscr{L}}(\sigma) - \rho\|_1 &= \|\operatorname{Ad}_U \circ e^{t\mathscr{L}}(\sigma) - U\rho U^{\dagger}\|_1 = \|\operatorname{Ad}_U \circ e^{t\mathscr{L}} \circ \operatorname{Ad}_{U^{\dagger}}(U\sigma U^{\dagger}) - \widetilde{\rho}\|_1 \\ &= \|e^{t\widetilde{\mathscr{L}}}(\widetilde{\sigma}) - \widetilde{\rho}\|_1 \end{aligned}$$

$$\text{Lindbladian} \qquad \mathcal{L}(\rho) = -i[H,\rho] + \sum_k \gamma_k \left[L_k \rho L_k^\dagger - \frac{1}{2} \{ L_k^\dagger L_k, \rho \} \right]$$

Consider the dual Lindbladian $\widetilde{\mathcal{L}}:=\operatorname{Ad}_U\circ\mathcal{L}\circ\operatorname{Ad}_{U^\dagger}$ with $\operatorname{Ad}_U(X):=UXU^\dagger$

- ullet If ho is the unique fixed point of \mathscr{L} , $\widetilde{
 ho}=U
 ho U^\dagger$ is the unique fixed point of \mathscr{L} .
- ullet The spectral gap, MLSI and mixing time of ${\mathscr L}$ coincide with those of ${\mathscr L}.$

$$\begin{aligned} \|e^{t\mathcal{L}}(\sigma) - \rho\|_1 &= \|\operatorname{Ad}_U \circ e^{t\mathcal{L}}(\sigma) - U\rho U^{\dagger}\|_1 = \|\operatorname{Ad}_U \circ e^{t\mathcal{L}} \circ \operatorname{Ad}_{U^{\dagger}}(U\sigma U^{\dagger}) - \widetilde{\rho}\|_1 \\ &= \|e^{t\widetilde{\mathcal{L}}}(\widetilde{\sigma}) - \widetilde{\rho}\|_1 \end{aligned}$$

$$\sup_{\sigma \in \mathcal{S}(\mathcal{H})} \|e^{t\mathcal{L}}(\sigma) - \rho\|_1 = \sup_{\sigma \in \mathcal{S}(\mathcal{H})} \|e^{t\mathcal{L}}(\widetilde{\sigma}) - \widetilde{\rho}\|_1$$

$$\text{Lindbladian} \qquad \mathcal{L}(\rho) = -i[H,\rho] + \sum_k \gamma_k \left[L_k \rho L_k^\dagger - \frac{1}{2} \{ L_k^\dagger L_k, \rho \} \right]$$

Consider the dual Lindbladian $\widetilde{\mathcal{L}}:=\operatorname{Ad}_U\circ\mathcal{L}\circ\operatorname{Ad}_{U^\dagger}$ with $\operatorname{Ad}_U(X):=UXU^\dagger$

- ullet If ho is the unique fixed point of \mathscr{L} , $\widetilde{
 ho}=U
 ho U^\dagger$ is the unique fixed point of $\widetilde{\mathscr{L}}$.
- ullet The spectral gap, MLSI and mixing time of ${\mathscr L}$ coincide with those of ${\mathscr L}.$

$$\sup_{\sigma \in \mathcal{S}(\mathcal{H})} \|e^{t\mathcal{L}}(\sigma) - \rho\|_1 = \sup_{\sigma \in \mathcal{S}(\mathcal{H})} \|e^{t\widetilde{\mathcal{L}}}(\widetilde{\sigma}) - \widetilde{\rho}\|_1$$

Mixing times coincide!

$$\text{Lindbladian} \qquad \mathcal{L}(\rho) = -i[H,\rho] + \sum_k \gamma_k \left[L_k \rho L_k^\dagger - \frac{1}{2} \{ L_k^\dagger L_k, \rho \} \right]$$

Consider the dual Lindbladian $\widetilde{\mathcal{L}}:=\operatorname{Ad}_U\circ\mathcal{L}\circ\operatorname{Ad}_{U^\dagger}$ with $\operatorname{Ad}_U(X):=UXU^\dagger$

- ullet In particular, if U is poly-depth and $\mathcal L$ is efficiently implementable, then $\widetilde{\mathcal L}$ also is!
- ullet Note that this doesn't require $\widehat{\mathcal{L}}$ to be local.

CONCLUSIONS

- We have recalled quantum Gibbs sampling via dissipation and some systems for which it is efficient.
- We have introduced quantum Gibbs sampling via duality.
 - This has been used to show that the 2D toric code is dual to two 1D Ising chains, for any system size.
 - Also algorithmically to show a computer-assisted proof of duality of other models of commuting Pauli operators to classical Hamiltonians, for small system sizes.
- We have shown that dual Lindbladians have the same mixing time and preserve efficiency.

CONCLUSIONS

- We have recalled quantum Gibbs sampling via dissipation and some systems for which it is efficient.
- We have introduced quantum Gibbs sampling via duality.
 - This has been used to show that the 2D toric code is dual to two 1D Ising chains, for any system size.
 - Also algorithmically to show a computer-assisted proof of duality of other models of commuting Pauli operators to classical Hamiltonians, for small system sizes.
- We have shown that dual Lindbladians have the same mixing time and preserve efficiency.

THANKS FOR YOUR ATTENTION!