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INTRODUCTION TO

QUANTUM GIBBS SAMPLING



SETTING: QUANTUM MANY-BODY SYSTEMS

® Spin lattice: A C C ZV H
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® Hamiltonian: H, = Z Hy -

XCA :

H,, = 0 for diam((X) > k
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® Spin lattice: A C C ZV
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SETTING: QUANTUM MANY-BODY SYSTEMS

Spin lattice: A € C ZP

Hilbert space associated with A : %, = ® K. = ® C?

xeN xeA

Density matrices: &, =S(Z ) ={p € B(FH ) : p>0, trl[p] =1}
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Hamiltonian: H, = Z Hy

XCA :

H,, = 0 for diam((X) > k

Finite-range (k-local inferactions): A (%)
|Hy|| <J VX CA

Commuting: [Hy, Hy| =0 VXY CA
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How do we do Gibbs sampling?



GIBBS SAMPLING / PREPARATION OF GIBBS

H), = ZHX p =
XCA

How do we do Gibbs sampling?
® A typical way is via dissipation.

STATES
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QUANTUM DISSIPATIVE EVOLUTIONS

HA=2HX p:

XCA Tr[e _'BHA]
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QUANTUM DISSIPATIVE EVOLUTIONS

* The dynamics of the system is dissipative!
 The continuous-time evolution of a state in the system is given by a Quantum Markov
Semigroup (Markovian approximation)



QUANTUM DISSIPATIVE EVOLUTIONS
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* The dynamics of the system is dissipative!
 The continuous-time evolution of a state in the system is given by a Quantum Markov
Semigroup (Markovian approximation)

e Lindbladian: £ describes the dynamics
of the system and L(p) = 0

e Given 0 € S(H,)
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QUANTUM DISSIPATIVE EVOLUTIONS

e _IBHA

Tr[e—PHA]

H, = ZHX P =
XCA

* The dynamics of the system is dissipative!
 The continuous-time evolution of a state in the system is given by a Quantum Markov
Semigroup (Markovian approximation)

e Lindbladian: [ describes the dynamics
of the system and L(p) = 0

e Given O €& S(HA) etﬁ(a-) tﬁ 1o

Dissipative quantum state engineering: Robust way of engineering relevant quantum
states and algorithms

[Verstraete, Wolf, Cirac, NatPhys ‘09]  [Kraus, Blichler, Diehl, Kantian, Micheli, Zoller, PRA ‘08]
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e Given 0 € S(H,)
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e Given 0 € S(Hp)

Efficient preparation of Gibbs states

When do we have || e~ (o) —p|li < e 2

Ingredients

. Efficient implementation of the Lindbladian

2. Rapid/fast mixing of the evolution



EFFICIENT IMPLEMENTATION OF THE LINDBLADIAN

I. Commuting case: Efficient implementation of Davies generator

[Rall, Wang, Wocjan, Quantum’23] [Li, Wang ICALP'23]

2. Non-commuting case: Efficient implementation of the CKG generatfor

[Chen, Kastoryano, Gilyen, arXiv:2311.09207]




EFFICIENT IMPLEMENTATION OF THE LINDBLADIAN

Number of qubits: | A |

I. Commuting case: Efficient implementation of Davies generator

[Rall, Wang, Wocjan, Quantum’23] [Li, Wang ICALP'23]

Circuit complexity: O(| A \2polylog |A|) Circuit depth: O(| A|polylog|A])

2. Non-commuting case: Efficient implementation of the CKG generatfor

[Chen, Kastoryano, Gilyen, arXiv:2311.09207]

Circuit complexity: O(| A \Zpolylog |A|) Circuit depth: O(| A |polylog|A])



RAPID/FAST MIXING OF THE EVOLUTION

1. Commuting case:

* 1D, TI, any positive temperature, rapid mixing
[Bardet, AC, Gao, Lucia, Perez-Garcia, Rouze, CMP’'23 and PRL 23]
* High D, 2-local, under decay of correlations + gap, rapid mixing
[Kochanowski, Alhambra, AC, Rouze, CMP’'25
e High D, k-local, under decay of MCMI + gap, rapid mixing

[AC, Gondolf, Kochanowski, Rouze, arXiv:2412.017322]

* 2D, quantum double models, fast mixing

[Lucia, Perez-Garcia, Perez-Hernandez, FMS'23]
* CSS codes in 2D, and in 3D 1/2, rapid mixing

[Stengele, AC, Gao, Lucia, Pérez-Garcia, Perez-Hernandez, Rouze, Warzel, in preparation]

2. Non-commuting case: Any dimension, high-enough temperature, rapid mixing
[Rouze, Stilck Franca, Alhambra, arXiv:2403.12691 and arXiv:2411.04885]
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RAPID/FAST MIXING OF THE EVOLUTION

1. Commuting case:

* 1D, TI, any positive temperature, rapid mixing
[Bardet, AC, Gao, Lucia, Perez-Garcia, Rouze, CMP’'23 and PRL 23]
* High D, 2-local, under decay of correlations + gap, rapid mixing
[Kochanowski, Alhambra, AC, Rouze, CMP’'25
e High D, k-local, under decay of MCMI + gap, rapid mixing

[AC, Gondolf, Kochanowski, Rouze, arXiv:2412.017322]

* 2D, quantum double models, fast mixing

[Lucia, Perez-Garcia, Perez-Hernandez, FMS'23]
* CSS codes in 2D, and in 3D 1/2, rapid mixing

[Stengele, AC, Gao, Lucia, Pérez-Garcia, Perez-Hernandez, Rouze, Warzel, in preparation]

Mixing time: O(polylog|A|) for rapid mixing, O/ |A|l0g|A|) for fast mixing.

2. Non-commuting case: Any dimension, high-enough temperature, rapid mixing
[Rouze, Stilck Franga, Alhambra, arXiv:2403.12691 and arXiv:2411.04885]


https://arxiv.org/pdf/2412.01732

EFFICIENT GIBBS SAMPLING

e Given 0 € S(Hp)

Efficient preparation of Gibbs states

When do we have || e~ (o) —p|li < e 2

Ingredients

. Efficient implementation of the Lindbladian

2. Rapid/fast mixing of the evolution



EFFICIENT GIBBS SAMPLING

e Given 0 € S(H,)

Efficient preparation of Gibbs states

When do we have || e~ (o) —p|li < e 2

Ingredients

l. Efficient implementation of the Lindbladian  Circuit depth: O(| A |polylog|A|)
O(polylog|A|) for rapid mixing,

2. Rapid/fast mixing of the evolution
OGH/ |A]log|A|) for fast mixing.
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When do we have |e* () —p|l1 <e ?

Ingredients

1. Efficient implementation of the Lindbladian  Circuit depth: @( \ A\ \ polylog \ A \)
O(polylog|A|) for rapid mixing,

2. Rapid/fast mixing of the evolution
OGH/|A]log|A|) for fast mixing.

3/2

Both cases vyield a circuit depth of at most O(|A |7 polylog|A|)

to prepare the Gibbs state
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Ingredients

1. Efficient implementation of the Lindbladian  Circuit depth: @( \ A\ \ polylog \ A \)
O(polylog|A|) for rapid mixing,

2. Rapid/fast mixing of the evolution
OGH/|A]log|A|) for fast mixing.

3/2

Both cases vyield a circuit depth of at most O(|A |7 polylog|A|)

to prepare the Gibbs state

Caveat: The mixing time depends exponentially on f!



EFFICIENT GIBBS SAMPLING

When do we have ||e'* (o) —p|l1 <e 2

Ingredients

l. Efficient implementation of the Lindbladian  Circuit depth: O(| A | polylog|A|)
O(polylog|A|) for rapid mixing,
O/ | Allog|A|) for fast mixing.
Both cases yield a circuit depth of at most O(| A|**polylog|A|)

to prepare the Gibbs state

2. Rapid/fast mixing of the evolution

Caveat: The mixing time depends exponentially on /!

Here we explore another simpler approach for specific models



QUANTUM GIBBS SAMPLING

VIA DUALITY
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Consider H; and H, two Hamiltonians.

We say that they are poly-depth dual if there exists a unitary U that can be
implemented by a circuit (of 2-local gates) of polynomial depth such that
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DUALITY

Consider H; and H, two Hamiltonians.

We say that they are poly-depth dual if there exists a unitary U that can be
implemented by a circuit (of 2-local gates) of polynomial depth such that

e_ﬁHl e_ﬁH2
Define — and =
Pl Tr[g—ﬂHl] P2 Tr[e‘ﬂHz]

Then, P1 = UszT .



DUALITY

Consider H; and H, two Hamiltonians.

We say that they are poly-depth dual if there exists a unitary U that can be
implemented by a circuit (of 2-local gates) of polynomial depth such that

e_ﬂHl e_ﬁH2 ’}‘
Define = ——  and = ————— . Then, = Up,U"' .
P1 Tr[e—PH] P2 Tr[e—Pt) P1 P2

Therefore, if p; can be efficiently sampled, p, as well.
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Consider H; and H, two poly-depth dual Hamiltonians with
H, = UHZUT and pP1 = UszT

Assume that p; can be efficiently sampled with € .



DUALITY

Consider H; and H, two poly-depth dual Hamiltonians with
H, = UHZUT and pP1 = UszT

Assume that p; can be efficiently sampled with € .

Time

Then p, can be efficiently sampled with U6 .

r7 i [oje
/ — [0)
n4 C
H T
\ — |0)
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Poly(n) N~—



QUANTUM GIBBS SAMPLING VIA DUALITY

Consider H; and H, two poly-depth dual Hamiltonians with
H, = UHZUT and pP1 = UszT

L 0y®e

Assume that p; can be efficiently sampled with € . U 3

Then p, can be efficiently sampled with U€ . —

\ —[0)

Ingredients. For a relevant Hamiltonian £1,: Pol()

. Find a poly-depth circuit mapping it to H,

2. Find an efficient sampler for p;,
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CLASSICAL 1D ISING CHAIN (OF LENGTH L)

L—1 1 2 3 4 5
H = — Z Jiotott! e ®© ®© (e o
i=1
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EXAMPLE: 1D ISING CHAIN

CLASSICAL 1D ISING CHAIN (OF LENGTH L)

L—1 1 2 3 4 5
H = — Z Jiotott! e ®© ®© (e o
i=1

U:= CX(1,2)CX(2,3)--- CX(L—1,L)

1000
oY _ 0100
0001

001¢0

NON-INTERACTING HAMILTONIAN (OF LENGTH L)

UHUT = — Z Ji_10! e ® ® ® ®



EXAMPLE: 1D ISING CHAIN

CLASSICAL 1D ISING CHAIN

(OF LENGTH L)
L—1

U:=CX(1,2)CX(2,3)---CX(L —1,L)

v

NON-INTERACTING HAMILTONIAN
(OF LENGTH L)

L
UHU' = - " J;_10!
1=2

1 ) 3 4
@ 0 ® © ¢
l CX (4,5)
(@ (® (® D,
l CX (3,4)
e ® 9 O,
l CX(2,3)
Ol O, O,
l CX(1,2)
o O, O, O,



EXAMPLE: 1D ISING CHAIN

CLASSICAL 1D ISING CHAIN
(OF LENGTH L)

O(L) depth

NON-INTERACTING HAMILTONIAN
(OF LENGTH L)

_ i
o—BUHU

W can be sampled In @(1) :

L
UHU' = - " J;_10!
1=2



EXAMPLE: 1D ISING CHAIN

CLASSICAL 1D ISING CHAIN
(OF LENGTH L)

L—1 —H
L €
H = — Jiotott! ———— can be sampled in O(L).
; Tre—/H] ° ()

O(L) depth

O(L) depth

NON-INTERACTING HAMILTONIAN
(OF LENGTH L)

_ i
o—BUHU

W can be sampled In @(1) :

L
UHU' = - " J;_10!
1=2
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DUALITY BETWEEN TORIC CODE AND CLASSICAL

2D TORIC CODE

Geometry Interactions
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DUALITY BETWEEN TORIC CODE AND CLASSICAL ISING CHAINS

2D TORIC CODE

Geometry Interactions

star plaquette
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DUALITY BETWEEN TORIC CODE AND CLASSICAL ISING CHAINS

MAIN RESULT For the 2D Toric Code in an L X L lattice,
there exists a quantum circuit C composed of O(L”) CX gates
and @(Lz) Hadamard gates such that

c( X 7A,)C and € Y 1,8,)C

veV, pCé&;

correspond fo 2 disjoint 1D Ising chains.
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MAIN RESULT For the 2D Toric Code in an L X L lattice,
there exists a quantum circuit C composed of O(L”) CX gates
and @(Lz) Hadamard gates such that

c( X 7A,)C and € Y 1,8,)C

veV, pCé&;

correspond to 2 disjoint 1D Ising chains.
1 2 3 Ll = J
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DUALITY BETWEEN TORIC CODE AND CLASSICAL ISING CHAINS

MAIN RESULT . ;
For the 2D Toric Code in an L X L lattice, I -

there exists a quantum circuit C of complexity O(L">) such that T

c( Y 14,)C and €( Y, 1,8, )C

veV, pC&, _%
correspond to 2 disjoint 1D Ising chains. g @\Q-) 1
e e R
16 ol:. ) @1}4//?_0

K-

CONSEQUENCE
The ground and Gibbs state of the 2D Toric Code can be prepared
with a gate complexity of O(L") for any 0 < 3 < 0.
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1
STEPS OF THE PROOF

Some of the steps:
- Layer of Hadamard gates
- CX gates

@(L3) — @(N3/2)
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STEPS OF THE PROOF

Some of the steps:
- Layer of Hadamard gates

- CX gates

@(L3) — @(N3/2)
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DUALITY BETWEEN TORIC CODE AND CLASSICAL ISING CHAINS

1
STEPS OF THE PROOF

Some of the steps:
- Layer of Hadamard gates
- CX gates

e - N
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DUALITY BETWEEN TORIC CODE AND CLASSICAL ISING CHAINS
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DUALITY BETWEEN TORIC CODE AND CLASSICAL ISING CHAINS

1 ) 3 I_é S0
STEPS OF THE PROOF ™I T 1 - ovy  sdtd |




STEPS OF THE PROOF

1

DUALITY BETWEEN TORIC CODE AND CLASSICAL ISING CHAINS

O(L°>) = O(N”?) 4[65
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Final step: In each of these geometries, we get one interaction on all sites
and magnetic fields in all sites. This is easily mapped to 2

% %




DUALITY BETWEEN TORIC CODE AND CLASSICAL ISING CHAINS

MAIN RESULT . ;
For the 2D Toric Code in an L X L lattice, I -

there exists a quantum circuit C of complexity O(L">) such that T

c( Y 14,)C and €( Y, 1,8, )C

veV, pC&, _%
correspond to 2 disjoint 1D Ising chains. g ;Q-) 1
B e e A
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K-

CONSEQUENCE
The ground and Gibbs state of the 2D Toric Code can be prepared
with a gate complexity of O(L") for any 0 < 3 < 0.
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with more general geometries.
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CSS CODE

Hamiltonian — Y Jy Ay — »  J,B, A, = QR ol, Byi=QR)at.

veVr pPCEL i€ i€p

with more general geometries.

T

Commuting Pauli operators H = ZaiHi~
1=1

with {H;} a collection of mutually orthogonal Pauli strings.
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The {H;} can be simultaneously diagonalised with a quantum circuit
of cuadratic depth.

[van den Berg, Temme, Quantum’20] [Aaronson, Gottesman, PRA04]



DUALITY OF OTHER CSS CODES

Result i—1

The {H;} can be simultaneously diagonalised with a quantum circuit
of cuadratic depth.

[van den Berg, Temme, Quantum’20] [Aaronson, Gottesman, PRA04]

Idea of the proof

Write interactions of the Hamiltonian in a tableau:

Operator|z;; | zi; S I'|'€S

110
7 01 l
R Interactions —}(X ‘ Z ‘ 8)




DUALITY OF OTHER CSS CODES

Result i—1

The {H;} can be simultaneously diagonalised with a quantum circuit
of cuadratic depth.

[van den Berg, Temme, Quantum’20] [Aaronson, Gottesman, PRA04]

Idea of the proof

Write interactions of the Hamiltonian in a tableau:

Operator A5 | Zij Si.l-es Example

110 l
R 010[110/0
Oy 1|1 . 0. R0, 1 -0, 1R gy #
. lolo Interactions —>(X ‘ A ‘ 8) | (1 0 1{0 0 1 1)




DUALITY OF OTHER CSS CODES

Result H = Z o H;

The {H;} can be simultaneously diagonalised with a quantum circuit
of cuadratic depth.

Idea of the proof
Write interactions of the Hamiltonian in a tableau:

Sites Example

Q0,21 ©1®0, o0
o g Oy & L — Oy & 1L KX Ty
Interactions D& VA | | 101

Then, the aim is to reduce the X part of the matrix to all Os and
analyse the remaining Z part.

Operator |u@;; | zi;

110
0] 1
Ty 1|1
010

I 10

00 1L




DUALITY OF OTHER CSS CODES

Result H = Z o H;

The {H;} can be simultaneously diagonalised with a quantum circuit
of cuadratic depth.

Idea of the proof
Write interactions of the Hamiltonian in a tableau:

Then, the aim is to reduce the X part of the matrix to all Os and
analyse the remaining Z part.

For these models, this is done with CX, Hadamard and Phase gates in
O(n?) depth.



DUALITY OF OTHER CSS CODES

Result o — Z o H:

The {H;} can be simultaneously diagonalised with a quantum circuit
of cuadratic depth.

These shows that all Hamiltonians composed of commuting Pauli operators
are poly-depth dual to classical Hamiltonians.

Now the question is: To which classical Hamiltonians?



DUALITY OF OTHER CSS CODES

Example H = Z itli

If a tableau is achieved with Z part like

00

these are two decoupled 1D Ising models and two spins without interactions.



DUALITY OF OTHER CSS CODES

Example H = Z itli

If a tableau is achieved with Z part like

00

0---0[1---1] 00

these are two decoupled 1D Ising models and two spins without interactions.

This is achieved from a 2D Toric Code.



DUALITY OF OTHER CSS CODES

Original
model Lattice Hamiltonian Dual model
2D toric IO O — > Two dccoupled
code ' o | o i S A; 0. 0r —Y B, 0- 0. Ising chains
® Lo |
L—.——)-J Oxr -
X —X L — 7
Rotated oy YA, ‘ _ Y B ‘ Non-interacting,
surface . single-spin
code < ® ) N ‘/i Z é Hamiltonian
>~ o 2.0 | =D Z—1Z
X
- o, Two decoupled
: lasso Ising chains
2D color o o, 0" 0. " f)r
_ YA, _ S B.
code on a 2 Ai ‘ 2. Bi ‘ non-interacting,
noneycomb I T e single-spin
lattice op Oz

Hamiltonian.
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This is proven algorithmically for system sizes of order up to 10° qubits

and conjectured in general.
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Consequence: All these models can be efficiently sampled for any
0 < p < 0o, except for the 3D toric code, for which we only have

efficient sampling at 0 < f < p-.
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Consider the dual Lindbladian £ :=AdyofoAdy: with Ady(X) := UXUT

Then:
e If ¢ is the unique fixed point of &, 6 = UosU" is the unique fixed point

of &Z.
® The spectral gap, MLSI and mixing time of £ coincide with those of £ .
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Consider the dual Lindbladian £:=AdyoLoAdy: with Ady(X) := UXUT

e If p is the unique fixed point of &, p = UpU" is the unique fixed point of <.
® The spectral gap, MLSI and mixing time of £ coincide with those of .
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Lindbladian  L(p) = —i[H,p] + > i |LrpLj, = 5{Li.Lk, p}

Consider the dual Lindbladian £:=AdyoLoAdyr with Ady(X) = UXU?

e If p is the unique fixed point of &, p = UpU" is the unique fixed point of <.
® The spectral gap, MLSI and mixing time of £ coincide with those of .

le'Z(6) — pll; = || Ady e €' (0) — UpUT||; = || Ady ° €' o Ad,«(UsU™) — |l
= 123 - 7l

sup |l (c) —pll; = sup |le"“(@) - pll,
€S (H) c€ES(H)
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Ea

Consider the dual Lindbladian £:=AdyoLoAdy: with Ady(X) := UXUT

e If p is the unique fixed point of &, p = UpU" is the unique fixed point of <.
® The spectral gap, MLSI and mixing time of £ coincide with those of .

sup |le™ () —pll, = sup [l () -7l
o€ES(H) cES(X)

If sup |le™? (o) —pl|l, < e , then sup |le’Z (o) —pll, < €
o€S(H) o€S(H)

Mixing times coincide!
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Lindbladian  L(p) = —i[H,p] + > i |LrpLj, = 5{Li.Lk, p}
k — -
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Consider the dual Lindbladian £:=AdyoLoAdy: with Ady(X) := UXUT

® In particular, if U is poly-depth and £ is efficiently implementable,
then £ also is!
® Note that this doesnt require £ to be local.



CONCLUSIONS

® We have recalled quantum Gibbs sampling via dissipation and some systems for
which it is efficient.
® We have infroduced quantum Gibbs sampling via duality.
® This has been used to show that the 2D toric code is dual to two 1D Ising
chains, for any system size.
® Also algorithmically to show a computer-assisted proof of duality of other
models of commuting Pauli operators fo classical Hamiltonians, for small system
Sizes.
® We have shown that dual Lindbladians have the same mixing time and preserve
efficiency.
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