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a first-order phase transition in the dynamical large de-
viations, an optimal geometry to accommodate space-
time solutes, and the dynamical analog of “hydrophobic
collapse”. While we consider the evolution of classical
configurations, since the dynamics is unitary our results
should also connect to the ongoing interest in the dynam-
ics of quantum circuits, e.g. [44–57]. Below, we introduce
the model and present our main results, while the sup-
plemental material (SM) [58] contains additional details.

Floquet-East model.— We consider a chain of 2L
sites with a binary variable (or classical spin) per site
ni 2 {0, 1}, with the site labels i taking half-integer val-
ues, i 2 {

1
2 , 1,

3
2 , . . . , L}. Relevant statistical states are

probability vectors |P i :=
P

n |niP (n), where {|ni :=
|n 1

2
i ⌦ |n1i ⌦ · · · ⌦ |nLi} is the configurational basis,

P (n) � 0 8n, and h�|P i =
P

n P (n) = 1 (with
h�| :=

P
n hn| the “flat state”). The dynamics is dis-

crete, staggered in terms of two half time-steps given by
the deterministic maps U e and Uo,

|Pt+1i = U e
|Pt+ 1

2
i = U eUo

|Pti , t 2 N. (1)

The maps U e and Uo consist of two-site gates u applied
either to even or odd pairs of neighbouring sites,

U e = u⌦L, Uo = ⇧Lu
⌦L⇧†

L, (2)

where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,

u =

2
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where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate

ũ :=

2
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n m
, (3)

and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as

:=


1
1

�
, :=

⇥
1 1

⇤
, = , = , (4)

where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,

:=
⇥
1 1

⇤
, :=


1
1

�
, :=

⇥
1 0 0 1

⇤
, (5)

= 2 , = , = , = .

From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey

= , = , (6)
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ũ :=

2

64

1 0 0 0
0 0 0 1
0 0 0 1
1 0 0 0

3

75 , hn n0
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the composition of the local gate

ũ :=

2

64

1 0 0 0
0 0 0 1
0 0 0 1
1 0 0 0

3

75 , hn n0
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cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate

ũ :=

2
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, (3)

and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as

:=


1
1

�
, :=

⇥
1 1

⇤
, = , = , (4)

where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,

:=
⇥
1 1

⇤
, :=


1
1

�
, :=

⇥
1 0 0 1

⇤
, (5)

= 2 , = , = , = .

From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey

= , = , (6)

(bi) invariant

⇒ flat state =
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= |Pti

2

The dynamics can be understood as a tensor network with the following convenient graphical representation of the
components of U ,

hs01s02|U |s1s2i =
s01 s02

s1 s2

, (7)

in terms of which the time-evolved state after starting from |p(0)i = |pi is schematically given as

|p(t)i =

|pi

. (8)

We will mainly consider dynamical correlation functions between local observables in the maximum entropy state
|p1i = 2�L |�i. For example, the correlation between one-site observables a and b at positions x and y and times t
and 0 is given as

h�|ax (UoU e)t by|p1i = 2�L

b

a

, =


1
1

�
, a =


a0 0
0 a1

�
. (9)

Space evolution and properties of local gates

To evaluate diagrams such as (9), we note some properties of the local deterministic gate. First, for later convenience
we introduce Ũ as a matrix that implements the left-to-right action of tensor (7),

hs01s02|Ũ |s1s2i = hs1s1|U |s2s02i , Ũ =

2
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Next, we note that the time-evolution tensor satisfies several local algebraic relations together with the local maximum-

entropy-state vector
⇥
1 1

⇤T
,

= , = , (11)

= , = 2 , = , = . (12)

The relations (11) are the direct consequence of the dynamics being deterministic and reversible, which implies that
|�i is both left and right eigenvector of the local time-evolution operator. On the other hand, relations (12) are a
special property of the dual operator Ũ , and in particular imply that in one of the spatial directions the dual evolution
is deterministic, while in the other is not. However, both fixed points (i.e. the left and right leading eigenvectors) of
the space-transfer matrix are still simple – the right fixed point is a maximum entropy state, while the left fixed point
is a more general product state.
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Cf. RND permutation circuits  
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Classical deterministic circuits
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a first-order phase transition in the dynamical large de-
viations, an optimal geometry to accommodate space-
time solutes, and the dynamical analog of “hydrophobic
collapse”. While we consider the evolution of classical
configurations, since the dynamics is unitary our results
should also connect to the ongoing interest in the dynam-
ics of quantum circuits, e.g. [44–57]. Below, we introduce
the model and present our main results, while the sup-
plemental material (SM) [58] contains additional details.

Floquet-East model.— We consider a chain of 2L
sites with a binary variable (or classical spin) per site
ni 2 {0, 1}, with the site labels i taking half-integer val-
ues, i 2 {

1
2 , 1,

3
2 , . . . , L}. Relevant statistical states are

probability vectors |P i :=
P

n |niP (n), where {|ni :=
|n 1

2
i ⌦ |n1i ⌦ · · · ⌦ |nLi} is the configurational basis,

P (n) � 0 8n, and h�|P i =
P

n P (n) = 1 (with
h�| :=

P
n hn| the “flat state”). The dynamics is dis-

crete, staggered in terms of two half time-steps given by
the deterministic maps U e and Uo,

|Pt+1i = U e
|Pt+ 1

2
i = U eUo

|Pti , t 2 N. (1)

The maps U e and Uo consist of two-site gates u applied
either to even or odd pairs of neighbouring sites,

U e = u⌦L, Uo = ⇧Lu
⌦L⇧†

L, (2)

where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,

u =

2

64

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

3

75 , hn0 m0
|u|n mi =:

n0 m0

n m

where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate

ũ :=
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and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as

:=


1
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, :=

⇥
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⇤
, = , = , (4)

where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,

:=
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From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey

= , = , (6)
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a first-order phase transition in the dynamical large de-
viations, an optimal geometry to accommodate space-
time solutes, and the dynamical analog of “hydrophobic
collapse”. While we consider the evolution of classical
configurations, since the dynamics is unitary our results
should also connect to the ongoing interest in the dynam-
ics of quantum circuits, e.g. [44–57]. Below, we introduce
the model and present our main results, while the sup-
plemental material (SM) [58] contains additional details.

Floquet-East model.— We consider a chain of 2L
sites with a binary variable (or classical spin) per site
ni 2 {0, 1}, with the site labels i taking half-integer val-
ues, i 2 {
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2 , 1,

3
2 , . . . , L}. Relevant statistical states are

probability vectors |P i :=
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n |niP (n), where {|ni :=
|n 1

2
i ⌦ |n1i ⌦ · · · ⌦ |nLi} is the configurational basis,
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n P (n) = 1 (with
h�| :=

P
n hn| the “flat state”). The dynamics is dis-

crete, staggered in terms of two half time-steps given by
the deterministic maps U e and Uo,

|Pt+1i = U e
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2
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|Pti , t 2 N. (1)

The maps U e and Uo consist of two-site gates u applied
either to even or odd pairs of neighbouring sites,

U e = u⌦L, Uo = ⇧Lu
⌦L⇧†

L, (2)

where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,

u =
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where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate

ũ :=
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and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as

:=
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, :=
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where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,
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From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey

= , = , (6)
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viations, an optimal geometry to accommodate space-
time solutes, and the dynamical analog of “hydrophobic
collapse”. While we consider the evolution of classical
configurations, since the dynamics is unitary our results
should also connect to the ongoing interest in the dynam-
ics of quantum circuits, e.g. [44–57]. Below, we introduce
the model and present our main results, while the sup-
plemental material (SM) [58] contains additional details.

Floquet-East model.— We consider a chain of 2L
sites with a binary variable (or classical spin) per site
ni 2 {0, 1}, with the site labels i taking half-integer val-
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i ⌦ |n1i ⌦ · · · ⌦ |nLi} is the configurational basis,
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P
n hn| the “flat state”). The dynamics is dis-

crete, staggered in terms of two half time-steps given by
the deterministic maps U e and Uo,
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The maps U e and Uo consist of two-site gates u applied
either to even or odd pairs of neighbouring sites,

U e = u⌦L, Uo = ⇧Lu
⌦L⇧†

L, (2)

where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,

u =
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where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate

ũ :=
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and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as

:=


1
1
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, :=

⇥
1 1

⇤
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where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,

:=
⇥
1 1
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, :=
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1
1
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, :=
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1 0 0 1

⇤
, (5)
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From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey

= , = , (6)
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a first-order phase transition in the dynamical large de-
viations, an optimal geometry to accommodate space-
time solutes, and the dynamical analog of “hydrophobic
collapse”. While we consider the evolution of classical
configurations, since the dynamics is unitary our results
should also connect to the ongoing interest in the dynam-
ics of quantum circuits, e.g. [44–57]. Below, we introduce
the model and present our main results, while the sup-
plemental material (SM) [58] contains additional details.

Floquet-East model.— We consider a chain of 2L
sites with a binary variable (or classical spin) per site
ni 2 {0, 1}, with the site labels i taking half-integer val-
ues, i 2 {

1
2 , 1,
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2 , . . . , L}. Relevant statistical states are

probability vectors |P i :=
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n |niP (n), where {|ni :=
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i ⌦ |n1i ⌦ · · · ⌦ |nLi} is the configurational basis,

P (n) � 0 8n, and h�|P i =
P

n P (n) = 1 (with
h�| :=

P
n hn| the “flat state”). The dynamics is dis-

crete, staggered in terms of two half time-steps given by
the deterministic maps U e and Uo,

|Pt+1i = U e
|Pt+ 1

2
i = U eUo

|Pti , t 2 N. (1)

The maps U e and Uo consist of two-site gates u applied
either to even or odd pairs of neighbouring sites,

U e = u⌦L, Uo = ⇧Lu
⌦L⇧†

L, (2)

where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,

u =
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where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate

ũ :=
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and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as

:=
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, :=
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where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,
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From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey

= , = , (6)
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where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,
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where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate
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and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as
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where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,
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From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey
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The dynamics can be understood as a tensor network with the following convenient graphical representation of the
components of U ,

hs01s02|U |s1s2i =
s01 s02

s1 s2

, (7)

in terms of which the time-evolved state after starting from |p(0)i = |pi is schematically given as

|p(t)i =

|pi

. (8)

We will mainly consider dynamical correlation functions between local observables in the maximum entropy state
|p1i = 2�L |�i. For example, the correlation between one-site observables a and b at positions x and y and times t
and 0 is given as

h�|ax (UoU e)t by|p1i = 2�L
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Space evolution and properties of local gates

To evaluate diagrams such as (9), we note some properties of the local deterministic gate. First, for later convenience
we introduce Ũ as a matrix that implements the left-to-right action of tensor (7),

hs01s02|Ũ |s1s2i = hs1s1|U |s2s02i , Ũ =

2
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Next, we note that the time-evolution tensor satisfies several local algebraic relations together with the local maximum-

entropy-state vector
⇥
1 1

⇤T
,

= , = , (11)

= , = 2 , = , = . (12)

The relations (11) are the direct consequence of the dynamics being deterministic and reversible, which implies that
|�i is both left and right eigenvector of the local time-evolution operator. On the other hand, relations (12) are a
special property of the dual operator Ũ , and in particular imply that in one of the spatial directions the dual evolution
is deterministic, while in the other is not. However, both fixed points (i.e. the left and right leading eigenvectors) of
the space-transfer matrix are still simple – the right fixed point is a maximum entropy state, while the left fixed point
is a more general product state.
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hs01s02|Ũ |s1s2i = hs1s1|U |s2s02i , Ũ =
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The dynamics can be understood as a tensor network with the following convenient graphical representation of the
components of U ,

hs01s02|U |s1s2i =
s01 s02

s1 s2

, (7)

in terms of which the time-evolved state after starting from |p(0)i = |pi is schematically given as

|p(t)i =

|pi

. (8)

We will mainly consider dynamical correlation functions between local observables in the maximum entropy state
|p1i = 2�L |�i. For example, the correlation between one-site observables a and b at positions x and y and times t
and 0 is given as

h�|ax (UoU e)t by|p1i = 2�L
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, a =
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Space evolution and properties of local gates

To evaluate diagrams such as (9), we note some properties of the local deterministic gate. First, for later convenience
we introduce Ũ as a matrix that implements the left-to-right action of tensor (7),

hs01s02|Ũ |s1s2i = hs1s1|U |s2s02i , Ũ =
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Next, we note that the time-evolution tensor satisfies several local algebraic relations together with the local maximum-

entropy-state vector
⇥
1 1

⇤T
,

= , = , (11)

= , = 2 , = , = . (12)

The relations (11) are the direct consequence of the dynamics being deterministic and reversible, which implies that
|�i is both left and right eigenvector of the local time-evolution operator. On the other hand, relations (12) are a
special property of the dual operator Ũ , and in particular imply that in one of the spatial directions the dual evolution
is deterministic, while in the other is not. However, both fixed points (i.e. the left and right leading eigenvectors) of
the space-transfer matrix are still simple – the right fixed point is a maximum entropy state, while the left fixed point
is a more general product state.
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special property of the dual operator Ũ , and in particular imply that in one of the spatial directions the dual evolution
is deterministic, while in the other is not. However, both fixed points (i.e. the left and right leading eigenvectors) of
the space-transfer matrix are still simple – the right fixed point is a maximum entropy state, while the left fixed point
is a more general product state.

0

0

0

0

2

The dynamics can be understood as a tensor network with the following convenient graphical representation of the
components of U ,

hs01s02|U |s1s2i =
s01 s02

s1 s2

, (7)

in terms of which the time-evolved state after starting from |p(0)i = |pi is schematically given as

|p(t)i =

|pi

. (8)

We will mainly consider dynamical correlation functions between local observables in the maximum entropy state
|p1i = 2�L |�i. For example, the correlation between one-site observables a and b at positions x and y and times t
and 0 is given as

h�|ax (UoU e)t by|p1i = 2�L

b

a

, =


1
1

�
, a =


a0 0
0 a1

�
. (9)

Space evolution and properties of local gates

To evaluate diagrams such as (9), we note some properties of the local deterministic gate. First, for later convenience
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a first-order phase transition in the dynamical large de-
viations, an optimal geometry to accommodate space-
time solutes, and the dynamical analog of “hydrophobic
collapse”. While we consider the evolution of classical
configurations, since the dynamics is unitary our results
should also connect to the ongoing interest in the dynam-
ics of quantum circuits, e.g. [44–57]. Below, we introduce
the model and present our main results, while the sup-
plemental material (SM) [58] contains additional details.

Floquet-East model.— We consider a chain of 2L
sites with a binary variable (or classical spin) per site
ni 2 {0, 1}, with the site labels i taking half-integer val-
ues, i 2 {

1
2 , 1,

3
2 , . . . , L}. Relevant statistical states are

probability vectors |P i :=
P

n |niP (n), where {|ni :=
|n 1

2
i ⌦ |n1i ⌦ · · · ⌦ |nLi} is the configurational basis,

P (n) � 0 8n, and h�|P i =
P

n P (n) = 1 (with
h�| :=

P
n hn| the “flat state”). The dynamics is dis-

crete, staggered in terms of two half time-steps given by
the deterministic maps U e and Uo,

|Pt+1i = U e
|Pt+ 1

2
i = U eUo

|Pti , t 2 N. (1)

The maps U e and Uo consist of two-site gates u applied
either to even or odd pairs of neighbouring sites,

U e = u⌦L, Uo = ⇧Lu
⌦L⇧†

L, (2)

where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,

u =

2
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75 , hn0 m0
|u|n mi =:

n0 m0

n m

where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate

ũ :=

2

64

1 0 0 0
0 0 0 1
0 0 0 1
1 0 0 0

3

75 , hn n0
|ũ|m m0

i =:
n0 m0

n m
, (3)

and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as

:=


1
1

�
, :=

⇥
1 1

⇤
, = , = , (4)

where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,

:=
⇥
1 1

⇤
, :=


1
1

�
, :=

⇥
1 0 0 1

⇤
, (5)

= 2 , = , = , = .

From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey

= , = , (6)

2

a first-order phase transition in the dynamical large de-
viations, an optimal geometry to accommodate space-
time solutes, and the dynamical analog of “hydrophobic
collapse”. While we consider the evolution of classical
configurations, since the dynamics is unitary our results
should also connect to the ongoing interest in the dynam-
ics of quantum circuits, e.g. [44–57]. Below, we introduce
the model and present our main results, while the sup-
plemental material (SM) [58] contains additional details.

Floquet-East model.— We consider a chain of 2L
sites with a binary variable (or classical spin) per site
ni 2 {0, 1}, with the site labels i taking half-integer val-
ues, i 2 {

1
2 , 1,

3
2 , . . . , L}. Relevant statistical states are

probability vectors |P i :=
P

n |niP (n), where {|ni :=
|n 1

2
i ⌦ |n1i ⌦ · · · ⌦ |nLi} is the configurational basis,

P (n) � 0 8n, and h�|P i =
P

n P (n) = 1 (with
h�| :=

P
n hn| the “flat state”). The dynamics is dis-

crete, staggered in terms of two half time-steps given by
the deterministic maps U e and Uo,

|Pt+1i = U e
|Pt+ 1

2
i = U eUo

|Pti , t 2 N. (1)

The maps U e and Uo consist of two-site gates u applied
either to even or odd pairs of neighbouring sites,

U e = u⌦L, Uo = ⇧Lu
⌦L⇧†

L, (2)

where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,

u =

2

64

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

3

75 , hn0 m0
|u|n mi =:

n0 m0

n m

where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
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The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
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rather than integrable. Fig. 1(c) shows a trajectory of
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namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
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Propagation in space and invariant states.— The
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and similarly defined evolution of a column vector |P̃xi
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The time-dynamics is deterministic and reversible (i.e.
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the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
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to 1 the same region in the absence of conditioning. The
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where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate
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and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as
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From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
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3
2 , . . . , L}. Relevant statistical states are

probability vectors |P i :=
P

n |niP (n), where {|ni :=
|n 1

2
i ⌦ |n1i ⌦ · · · ⌦ |nLi} is the configurational basis,

P (n) � 0 8n, and h�|P i =
P

n P (n) = 1 (with
h�| :=

P
n hn| the “flat state”). The dynamics is dis-

crete, staggered in terms of two half time-steps given by
the deterministic maps U e and Uo,

|Pt+1i = U e
|Pt+ 1

2
i = U eUo

|Pti , t 2 N. (1)

The maps U e and Uo consist of two-site gates u applied
either to even or odd pairs of neighbouring sites,

U e = u⌦L, Uo = ⇧Lu
⌦L⇧†

L, (2)

where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,

u =

2
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75 , hn0 m0
|u|n mi =:

n0 m0

n m

where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate

ũ :=

2
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|ũ|m m0

i =:
n0 m0

n m
, (3)

and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as

:=


1
1

�
, :=

⇥
1 1

⇤
, = , = , (4)

where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,

:=
⇥
1 1

⇤
, :=


1
1

�
, :=

⇥
1 0 0 1

⇤
, (5)

= 2 , = , = , = .

From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey

= , = , (6)

(bi) invariant

⇒ flat state =
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= |Pti

2

The dynamics can be understood as a tensor network with the following convenient graphical representation of the
components of U ,

hs01s02|U |s1s2i =
s01 s02

s1 s2

, (7)

in terms of which the time-evolved state after starting from |p(0)i = |pi is schematically given as

|p(t)i =

|pi

. (8)

We will mainly consider dynamical correlation functions between local observables in the maximum entropy state
|p1i = 2�L |�i. For example, the correlation between one-site observables a and b at positions x and y and times t
and 0 is given as

h�|ax (UoU e)t by|p1i = 2�L

b

a

, =


1
1

�
, a =


a0 0
0 a1

�
. (9)

Space evolution and properties of local gates

To evaluate diagrams such as (9), we note some properties of the local deterministic gate. First, for later convenience
we introduce Ũ as a matrix that implements the left-to-right action of tensor (7),

hs01s02|Ũ |s1s2i = hs1s1|U |s2s02i , Ũ =

2
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Next, we note that the time-evolution tensor satisfies several local algebraic relations together with the local maximum-

entropy-state vector
⇥
1 1

⇤T
,

= , = , (11)

= , = 2 , = , = . (12)

The relations (11) are the direct consequence of the dynamics being deterministic and reversible, which implies that
|�i is both left and right eigenvector of the local time-evolution operator. On the other hand, relations (12) are a
special property of the dual operator Ũ , and in particular imply that in one of the spatial directions the dual evolution
is deterministic, while in the other is not. However, both fixed points (i.e. the left and right leading eigenvectors) of
the space-transfer matrix are still simple – the right fixed point is a maximum entropy state, while the left fixed point
is a more general product state.
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we introduce Ũ as a matrix that implements the left-to-right action of tensor (7),
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Conserved quantities

For            : either fully chaotic (i.e. no CQs, e.g. East) or integrable
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d = 2

Gibbs state = product
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a first-order phase transition in the dynamical large de-
viations, an optimal geometry to accommodate space-
time solutes, and the dynamical analog of “hydrophobic
collapse”. While we consider the evolution of classical
configurations, since the dynamics is unitary our results
should also connect to the ongoing interest in the dynam-
ics of quantum circuits, e.g. [44–57]. Below, we introduce
the model and present our main results, while the sup-
plemental material (SM) [58] contains additional details.

Floquet-East model.— We consider a chain of 2L
sites with a binary variable (or classical spin) per site
ni 2 {0, 1}, with the site labels i taking half-integer val-
ues, i 2 {

1
2 , 1,

3
2 , . . . , L}. Relevant statistical states are

probability vectors |P i :=
P

n |niP (n), where {|ni :=
|n 1

2
i ⌦ |n1i ⌦ · · · ⌦ |nLi} is the configurational basis,

P (n) � 0 8n, and h�|P i =
P

n P (n) = 1 (with
h�| :=

P
n hn| the “flat state”). The dynamics is dis-

crete, staggered in terms of two half time-steps given by
the deterministic maps U e and Uo,

|Pt+1i = U e
|Pt+ 1

2
i = U eUo

|Pti , t 2 N. (1)

The maps U e and Uo consist of two-site gates u applied
either to even or odd pairs of neighbouring sites,

U e = u⌦L, Uo = ⇧Lu
⌦L⇧†

L, (2)

where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,

u =

2
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1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

3

75 , hn0 m0
|u|n mi =:

n0 m0

n m

where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate

ũ :=

2
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1 0 0 0
0 0 0 1
0 0 0 1
1 0 0 0

3

75 , hn n0
|ũ|m m0

i =:
n0 m0

n m
, (3)

and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as

:=


1
1

�
, :=

⇥
1 1

⇤
, = , = , (4)

where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,

:=
⇥
1 1

⇤
, :=


1
1

�
, :=

⇥
1 0 0 1

⇤
, (5)

= 2 , = , = , = .

From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey

= , = , (6)
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in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
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a first-order phase transition in the dynamical large de-
viations, an optimal geometry to accommodate space-
time solutes, and the dynamical analog of “hydrophobic
collapse”. While we consider the evolution of classical
configurations, since the dynamics is unitary our results
should also connect to the ongoing interest in the dynam-
ics of quantum circuits, e.g. [44–57]. Below, we introduce
the model and present our main results, while the sup-
plemental material (SM) [58] contains additional details.

Floquet-East model.— We consider a chain of 2L
sites with a binary variable (or classical spin) per site
ni 2 {0, 1}, with the site labels i taking half-integer val-
ues, i 2 {

1
2 , 1,

3
2 , . . . , L}. Relevant statistical states are

probability vectors |P i :=
P

n |niP (n), where {|ni :=
|n 1

2
i ⌦ |n1i ⌦ · · · ⌦ |nLi} is the configurational basis,

P (n) � 0 8n, and h�|P i =
P

n P (n) = 1 (with
h�| :=

P
n hn| the “flat state”). The dynamics is dis-

crete, staggered in terms of two half time-steps given by
the deterministic maps U e and Uo,

|Pt+1i = U e
|Pt+ 1

2
i = U eUo

|Pti , t 2 N. (1)

The maps U e and Uo consist of two-site gates u applied
either to even or odd pairs of neighbouring sites,

U e = u⌦L, Uo = ⇧Lu
⌦L⇧†

L, (2)

where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,

u =

2
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where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate

ũ :=

2

64

1 0 0 0
0 0 0 1
0 0 0 1
1 0 0 0

3

75 , hn n0
|ũ|m m0

i =:
n0 m0

n m
, (3)

and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as

:=


1
1

�
, :=

⇥
1 1

⇤
, = , = , (4)

where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,

:=
⇥
1 1

⇤
, :=


1
1

�
, :=

⇥
1 0 0 1

⇤
, (5)

= 2 , = , = , = .

From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey

= , = , (6)
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in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
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Then the following computational graph calculates the probability of an inactive region of size l ⇥ t:

pinactive(l, t;L, T ) =
1

dL
⇥ .
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where Cdisc =
P

i even hqi,⌧q0,0ic� . Now Cdisc is related to Ccont as

Cdisc =
1

�x

X

i even

�x hqi,⌧q0,0ic� (41)

=
1

�x

Z
dx hq(x, 0)q(0, 0)ic� (42)

=
1

2a

Z
dx hq(x, 0)q(0, 0)ic� =

Ccont

2a
. (43)

Now hqi,⌧q0,0ic� = h�qi,⌧�q0,0ic� = Ccont h�(ia, ⌧a),�(0, 0)ic� , so we have

Ddisc
i,⌧ =

Ccont

Cdisc
h�(ia, ⌧a),�(0, 0)ic� = 2a h�(ia, ⌧a),�(0, 0)ic� (44)

=
2a

(�Ba⌧)2/3
fKPZ

✓
ia

(�B⌧a)2/3

◆
(45)

where �B = 2
p
aCdisc|j00(q0)|. Finally, we can work in units where a = 1 to find

Ddisc
i,⌧ =

2

(2
p
Cdisc|j00(q0)|⌧)2/3

fKPZ

✓
i

(2
p
Cdisc|j00(q0)|⌧)2/3

◆
. (46)

For example we predict that the peak will evolve with time as

maxiD
disc
i,⌧ =

2

(�B⌧)2/3
fKPZ (0) , (47)

where fKPZ(0) ⇡ 0.54 and �B = 2
p
Cdisc|j00(q0)|. From this, we should find that the peak scale as ⌧�2/3. We should

also be able to predict the superdiffusion constant �B. Next, the width of the distribution (full-width-half-maximum
FWHM will work better than variance) should scale as ⌧�2/3 also. Lastly, we should be able to fit the universal KPZ
function.

RESULTS

For D = 1, there are (22)! = 24 gates for d = 2. Here we verified that gates either have a) only one conserved
quantity, ex. the East model (d,�) = (2, 5), or more and more conserved quantities as l is increased, such as the
SWAP gate. For d = 3, there are (32)! = 362880 possible gates. For these it is still possible to exhaustively search
through them. For d = 4 there are (24)! = 2.092279 ⇥ 1013 gates, which rules out an exhaustive search.

For D = 2, there are already (22⇥2)! gates, which is the same as that for (D, d) = (1, 4). Therefore we reduce the
search space to gates that conserve the number of 1s. This fragments the space into 0, 1, 2, 3, and 4 particle sectors,
resulting in a managable 1! 4! 6! 4! 1! = 414720 gates.

Below we present some representative examples of results obtained with our method.

D = 1, d = 3, � = 996

For this gate, the transition rules are given by

|00i ! |00i |01i ! |01i |02i ! |10i
|10i ! |12i |11i ! |11i |12i ! |21i
|20i ! |02i |21i ! |20i |22i ! |22i.

(48)

Up to l = 2, Nk = 4, N✏ = 4, we find exactly one conserved quantity on a single site with k = ✏ = 0 and ± = +,

hfe| = h1| , hfo| = � h0| , (49)
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SWAP gate. For d = 3, there are (32)! = 362880 possible gates. For these it is still possible to exhaustively search
through them. For d = 4 there are (24)! = 2.092279 ⇥ 1013 gates, which rules out an exhaustive search.

For D = 2, there are already (22⇥2)! gates, which is the same as that for (D, d) = (1, 4). Therefore we reduce the
search space to gates that conserve the number of 1s. This fragments the space into 0, 1, 2, 3, and 4 particle sectors,
resulting in a managable 1! 4! 6! 4! 1! = 414720 gates.

Below we present some representative examples of results obtained with our method.

D = 1, d = 3, � = 996

For this gate, the transition rules are given by

|00i ! |00i |01i ! |01i |02i ! |10i
|10i ! |12i |11i ! |11i |12i ! |21i
|20i ! |02i |21i ! |20i |22i ! |22i.

(48)

Up to l = 2, Nk = 4, N✏ = 4, we find exactly one conserved quantity on a single site with k = ✏ = 0 and ± = +,

hfe| = h1| , hfo| = � h0| , (49)
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OTHER HYDRODYNAMIC PHENOMENOLOGY

Our search of d = 3 gates reveals a wealth of other hy-
drodynamic phenomenology. We discuss representative
gates of some below.
• Staggered conserved quantities. Gates with CQs with
nontrivial periodicities m, n > 1 exist. An example is
(d, �) = (3, 229117), with rules

|00i ! |12i |01i ! |22i |02i ! |20i
|10i ! |02i |11i ! |00i |12i ! |10i
|20i ! |01i |21i ! |11i |22i ! |21i .

(24)

Here, there is one SCQ,

hf (1)
e | = h1| + h2| , hf (1)

o | = h0| + 2 h1| + h2| , (25)

and a second CQ with µ2 = �2 = ei⇡/2,

hf (2)
e | = h0| � h1| + h2| , hf (2)

o | = h1| + 2 h2| , (26)

meaning it is conserved only after n2 = 4 timesteps and
is periodic over m2 = 4 translations. To confirm that
there are only two CQs in this circuit, we choose three
observables (A4, B4, C4) on randomly sampled initial
states, and plot their thermal expectation values. As
shown in Fig. 2(b), these values lie on a two-dimensional
surface as predicted by theory, Eq. (7). Since Eq. (26)
changes sign every two sites, if the sampled initial
states are spatially period-2, the hydrodynamics decou-
ples [37] and the data falls on a one-dimensional curve,
corresponding to the �2 = 0 predictions. In comparison,
for (d, �) = (3, 996), both period-2 and period-4 initial
states lie on a one-dimensional curve, as Fig. 2(a).
• Fermi–Pasta–Ulam–Tsingou (FPUT) phenomenol-
ogy. The SCQ of SG (d, �) = (3, 2312) with rules

|00i ! |00i |01i ! |01i |02i ! |12i
|10i ! |10i |11i ! |11i |12i ! |20i
|20i ! |21i |21i ! |02i |22i ! |22i,

(27)

is hfe,o| = h2|, i.e. it conserved the number of |2is.
Eq. (11) predicts ⌘(q) = ⌘00(q) = 0 and therefore diffu-
sive correlations. However, at low densities, preclud-
ing this diffusive effect, there is a transient state that is
characteristic of integrability. It is similar to the FPUT
phenomenology typically observed in one-dimensional
systems with energy and momentum conservation [38].

Indeed, looking the trajectories of |2is, at two-body
collisions, they pass through each other (SM Sec. F [27]),
as left of Fig. 6(a). This is similar to what happens by en-
ergy and momentum conservation in Hamiltonian par-
ticle systems. Only when three or more |2is meet is there
a non-trivial interaction that breaks their linear trajec-
tories, as right of Fig. 6(a). This facilitates the even-
tual diffusion. Therefore, at low density of |2i’s and

short timescales, all trajectories are ballistic as in inte-
grable systems, only becoming diffusive at later times,
see Fig. 6(b).

• Anomalous current fluctuations. Shocks and KPZ
superdiffusion are observed in generic hydrodynamic
equations. However, in certain systems satisfying lin-
ear degeneracy conditions [39], shock formation is ab-
sent [20]. This includes models with vanishing currents,
such as circuit (d, �) = (3, 2312) discussed previously,
but also integrable systems. In linear degenerate sys-
tems, corrections to Euler hydrodynamics are typically
expected to be diffusive [40]. However, more nuanced
universal behavior can emerge. Recently, there has been
interest in anomalous diffusion due to anomalous cur-
rent fluctuations. This behavior has also been observed
classical brickwork circuits in Refs. [41, 42], which cor-
respond to (d, �) = (3, 12990) in our notation.

OUTLOOK

In this paper we introduced powerful but straight-
forward methods to deduce the conserved quantities of
classical deterministic brickwork circuits and their ex-
act hydrodynamic equations. Harnessing the efficiency
of performing microscopic simulations of such circuits,
we convincingly verified the hydrodynamic predictions.
As an important example, we described the behaviour
of circuit (d, �) = (3, 996), to our knowledge the first
case of a deterministic, closed system with a single con-
served quantity whose microscopics yield the Burgers
equation and KPZ superdiffusion correlations at large
scales. We stress the simplicity and generality of our
setting here, compared to the complications in the very
few other deterministic interacting models (integrable
systems and certain classical 1D chains) where such for-
mulations are possible [3]. One reason for this simplic-
ity is the breaking of time-translation invariance in our
circuits. Looking forward, this circuit approach should
help understand all aspects of hydrodynamic theories to
finally prove their emergence from microscopics.

The techniques we developed readily extend to
higher-dimensional and to quantum circuits. In the
quantum case, the continuum of possible two-body
gates would allow to mimic the behavior of Hamilto-
nian systems with a smoothly-varying external poten-
tial. Hydrodynamic theories for quantum circuits are
particularly interesting as they provide a way to bench-
mark the performance of quantum computers at large
scale [43]. Since hydrodynamic evolution in D > 1
generically displays turbulence rather than shocks, an
important avenue for research is to find simple circuit
models that can provide insight into the poorly under-
stood physics of turbulence [1].
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I. BLOCK CELLULAR AUTOMATA
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FIG. 1. Some block cellular automata, also known as classical brickwork circuits studied in this work for D = 1 spatial dimensions,
d = 3 local state space for permutation indices � = 996, 2312, 2316, 229177, 240726. All of these automata have conserved
quantities, some of which are obvious (ex. number of 2s in the case of � = 2312, 2316), some of which are not (ex. number of
either 1 or 2s on even sites and number of 0s on the odd sites for � = 229177).

In this work we consider reversible block cellular automata with Margolus neighborhoods [1], also referred to as
brickwork ‘classical circuits’ in recent non-equilibrium stat-mech literature [2]. We consider one spatial dimension,
but generalisation to higher dimensions is straightforward. Consider discrete states a 2 D of state space D =
{0, 1, · · · , d � 1}, and an element of the permutation group � 2 Sd2 . We will sometimes overload � to denote the
index of the permutation in the permutation group as well. In Fig. 1, we illustrate various automata/gates for D = 1,
d = 3. As we will find, all of these gates have conserved quantities.

Treating a pair of input states (a, b) as a single element, We define a permutation gate u(�) as a map from a pair of
input states (a, b) to its permuted pair, (�1(a, b),�2(a, b)). Denoting a state in ket notation |ai, the permutation gate
can be written as

u =
X

a,b

|�1(a, b),�2(a, b)iha, b|. (1)

Throughout, we will go back and forth between Dirac and tensor network notation. In the latter language we have

h�(a, b)|u |a, bi =

a b

�1(a, b) �2(a, b)

. (2)
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Then the following computational graph calculates the probability of an inactive region of size l ⇥ t:

pinactive(l, t;L, T ) =
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dL
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where Cdisc =
P

i even hqi,⌧q0,0ic� . Now Cdisc is related to Ccont as

Cdisc =
1

�x

X

i even

�x hqi,⌧q0,0ic� (41)

=
1

�x

Z
dx hq(x, 0)q(0, 0)ic� (42)

=
1

2a

Z
dx hq(x, 0)q(0, 0)ic� =

Ccont

2a
. (43)

Now hqi,⌧q0,0ic� = h�qi,⌧�q0,0ic� = Ccont h�(ia, ⌧a),�(0, 0)ic� , so we have

Ddisc
i,⌧ =

Ccont

Cdisc
h�(ia, ⌧a),�(0, 0)ic� = 2a h�(ia, ⌧a),�(0, 0)ic� (44)

=
2a

(�Ba⌧)2/3
fKPZ

✓
ia

(�B⌧a)2/3

◆
(45)

where �B = 2
p
aCdisc|j00(q0)|. Finally, we can work in units where a = 1 to find

Ddisc
i,⌧ =

2

(2
p
Cdisc|j00(q0)|⌧)2/3

fKPZ

✓
i

(2
p
Cdisc|j00(q0)|⌧)2/3

◆
. (46)

For example we predict that the peak will evolve with time as

maxiD
disc
i,⌧ =

2

(�B⌧)2/3
fKPZ (0) , (47)

where fKPZ(0) ⇡ 0.54 and �B = 2
p
Cdisc|j00(q0)|. From this, we should find that the peak scale as ⌧�2/3. We should

also be able to predict the superdiffusion constant �B. Next, the width of the distribution (full-width-half-maximum
FWHM will work better than variance) should scale as ⌧�2/3 also. Lastly, we should be able to fit the universal KPZ
function.

RESULTS

For D = 1, there are (22)! = 24 gates for d = 2. Here we verified that gates either have a) only one conserved
quantity, ex. the East model (d,�) = (2, 5), or more and more conserved quantities as l is increased, such as the
SWAP gate. For d = 3, there are (32)! = 362880 possible gates. For these it is still possible to exhaustively search
through them. For d = 4 there are (24)! = 2.092279 ⇥ 1013 gates, which rules out an exhaustive search.

For D = 2, there are already (22⇥2)! gates, which is the same as that for (D, d) = (1, 4). Therefore we reduce the
search space to gates that conserve the number of 1s. This fragments the space into 0, 1, 2, 3, and 4 particle sectors,
resulting in a managable 1! 4! 6! 4! 1! = 414720 gates.

Below we present some representative examples of results obtained with our method.

D = 1, d = 3, � = 996

For this gate, the transition rules are given by

|00i ! |00i |01i ! |01i |02i ! |10i
|10i ! |12i |11i ! |11i |12i ! |21i
|20i ! |02i |21i ! |20i |22i ! |22i.

(48)

Up to l = 2, Nk = 4, N✏ = 4, we find exactly one conserved quantity on a single site with k = ✏ = 0 and ± = +,

hfe| = h1| , hfo| = � h0| , (49)
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a first-order phase transition in the dynamical large de-
viations, an optimal geometry to accommodate space-
time solutes, and the dynamical analog of “hydrophobic
collapse”. While we consider the evolution of classical
configurations, since the dynamics is unitary our results
should also connect to the ongoing interest in the dynam-
ics of quantum circuits, e.g. [44–57]. Below, we introduce
the model and present our main results, while the sup-
plemental material (SM) [58] contains additional details.

Floquet-East model.— We consider a chain of 2L
sites with a binary variable (or classical spin) per site
ni 2 {0, 1}, with the site labels i taking half-integer val-
ues, i 2 {

1
2 , 1,

3
2 , . . . , L}. Relevant statistical states are

probability vectors |P i :=
P

n |niP (n), where {|ni :=
|n 1

2
i ⌦ |n1i ⌦ · · · ⌦ |nLi} is the configurational basis,

P (n) � 0 8n, and h�|P i =
P

n P (n) = 1 (with
h�| :=

P
n hn| the “flat state”). The dynamics is dis-

crete, staggered in terms of two half time-steps given by
the deterministic maps U e and Uo,

|Pt+1i = U e
|Pt+ 1

2
i = U eUo

|Pti , t 2 N. (1)

The maps U e and Uo consist of two-site gates u applied
either to even or odd pairs of neighbouring sites,

U e = u⌦L, Uo = ⇧Lu
⌦L⇧†

L, (2)

where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,

u =

2
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1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

3

75 , hn0 m0
|u|n mi =:

n0 m0

n m

where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate

ũ :=

2

64

1 0 0 0
0 0 0 1
0 0 0 1
1 0 0 0

3

75 , hn n0
|ũ|m m0

i =:
n0 m0

n m
, (3)

and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as

:=


1
1

�
, :=

⇥
1 1

⇤
, = , = , (4)

where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,

:=
⇥
1 1

⇤
, :=


1
1

�
, :=

⇥
1 0 0 1

⇤
, (5)

= 2 , = , = , = .

From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey

= , = , (6)
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a first-order phase transition in the dynamical large de-
viations, an optimal geometry to accommodate space-
time solutes, and the dynamical analog of “hydrophobic
collapse”. While we consider the evolution of classical
configurations, since the dynamics is unitary our results
should also connect to the ongoing interest in the dynam-
ics of quantum circuits, e.g. [44–57]. Below, we introduce
the model and present our main results, while the sup-
plemental material (SM) [58] contains additional details.

Floquet-East model.— We consider a chain of 2L
sites with a binary variable (or classical spin) per site
ni 2 {0, 1}, with the site labels i taking half-integer val-
ues, i 2 {
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2 , 1,

3
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P

n |niP (n), where {|ni :=
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i ⌦ |n1i ⌦ · · · ⌦ |nLi} is the configurational basis,

P (n) � 0 8n, and h�|P i =
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n P (n) = 1 (with
h�| :=
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n hn| the “flat state”). The dynamics is dis-

crete, staggered in terms of two half time-steps given by
the deterministic maps U e and Uo,

|Pt+1i = U e
|Pt+ 1
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i = U eUo

|Pti , t 2 N. (1)

The maps U e and Uo consist of two-site gates u applied
either to even or odd pairs of neighbouring sites,

U e = u⌦L, Uo = ⇧Lu
⌦L⇧†

L, (2)

where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,

u =
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where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate

ũ :=

2
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and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as

:=
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1
1

�
, :=
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1 1

⇤
, = , = , (4)

where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,

:=
⇥
1 1
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1
1

�
, :=
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1 0 0 1

⇤
, (5)

= 2 , = , = , = .

From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey

= , = , (6)
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viations, an optimal geometry to accommodate space-
time solutes, and the dynamical analog of “hydrophobic
collapse”. While we consider the evolution of classical
configurations, since the dynamics is unitary our results
should also connect to the ongoing interest in the dynam-
ics of quantum circuits, e.g. [44–57]. Below, we introduce
the model and present our main results, while the sup-
plemental material (SM) [58] contains additional details.
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sites with a binary variable (or classical spin) per site
ni 2 {0, 1}, with the site labels i taking half-integer val-
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probability vectors |P i :=
P
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i ⌦ |n1i ⌦ · · · ⌦ |nLi} is the configurational basis,
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n hn| the “flat state”). The dynamics is dis-

crete, staggered in terms of two half time-steps given by
the deterministic maps U e and Uo,

|Pt+1i = U e
|Pt+ 1
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i = U eUo

|Pti , t 2 N. (1)

The maps U e and Uo consist of two-site gates u applied
either to even or odd pairs of neighbouring sites,

U e = u⌦L, Uo = ⇧Lu
⌦L⇧†

L, (2)

where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,
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where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate
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and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
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where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
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From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
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where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,

u =

2
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where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate

ũ :=

2
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and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as

:=


1
1

�
, :=

⇥
1 1

⇤
, = , = , (4)

where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,

:=
⇥
1 1

⇤
, :=


1
1

�
, :=

⇥
1 0 0 1

⇤
, (5)

= 2 , = , = , = .

From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey

= , = , (6)
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a first-order phase transition in the dynamical large de-
viations, an optimal geometry to accommodate space-
time solutes, and the dynamical analog of “hydrophobic
collapse”. While we consider the evolution of classical
configurations, since the dynamics is unitary our results
should also connect to the ongoing interest in the dynam-
ics of quantum circuits, e.g. [44–57]. Below, we introduce
the model and present our main results, while the sup-
plemental material (SM) [58] contains additional details.

Floquet-East model.— We consider a chain of 2L
sites with a binary variable (or classical spin) per site
ni 2 {0, 1}, with the site labels i taking half-integer val-
ues, i 2 {

1
2 , 1,

3
2 , . . . , L}. Relevant statistical states are

probability vectors |P i :=
P

n |niP (n), where {|ni :=
|n 1
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i ⌦ |n1i ⌦ · · · ⌦ |nLi} is the configurational basis,

P (n) � 0 8n, and h�|P i =
P

n P (n) = 1 (with
h�| :=

P
n hn| the “flat state”). The dynamics is dis-

crete, staggered in terms of two half time-steps given by
the deterministic maps U e and Uo,

|Pt+1i = U e
|Pt+ 1

2
i = U eUo

|Pti , t 2 N. (1)

The maps U e and Uo consist of two-site gates u applied
either to even or odd pairs of neighbouring sites,

U e = u⌦L, Uo = ⇧Lu
⌦L⇧†

L, (2)

where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,

u =
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where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate
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and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as

:=


1
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, :=
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where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,

:=
⇥
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, :=
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, (5)
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From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey

= , = , (6)
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where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate
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and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as

:=


1
1
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, :=

⇥
1 1

⇤
, = , = , (4)

where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,
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From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey

= , = , (6)
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a first-order phase transition in the dynamical large de-
viations, an optimal geometry to accommodate space-
time solutes, and the dynamical analog of “hydrophobic
collapse”. While we consider the evolution of classical
configurations, since the dynamics is unitary our results
should also connect to the ongoing interest in the dynam-
ics of quantum circuits, e.g. [44–57]. Below, we introduce
the model and present our main results, while the sup-
plemental material (SM) [58] contains additional details.
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sites with a binary variable (or classical spin) per site
ni 2 {0, 1}, with the site labels i taking half-integer val-
ues, i 2 {
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2 , 1,

3
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P

n P (n) = 1 (with
h�| :=

P
n hn| the “flat state”). The dynamics is dis-

crete, staggered in terms of two half time-steps given by
the deterministic maps U e and Uo,

|Pt+1i = U e
|Pt+ 1
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|Pti , t 2 N. (1)

The maps U e and Uo consist of two-site gates u applied
either to even or odd pairs of neighbouring sites,

U e = u⌦L, Uo = ⇧Lu
⌦L⇧†

L, (2)

where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,

u =
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where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate
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and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as
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where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
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From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey
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⌦L⇧†

L, (2)

where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,

u =

2
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where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate

ũ :=

2
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and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as

:=


1
1

�
, :=

⇥
1 1

⇤
, = , = , (4)

where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,

:=
⇥
1 1
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From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey

= , = , (6)
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a first-order phase transition in the dynamical large de-
viations, an optimal geometry to accommodate space-
time solutes, and the dynamical analog of “hydrophobic
collapse”. While we consider the evolution of classical
configurations, since the dynamics is unitary our results
should also connect to the ongoing interest in the dynam-
ics of quantum circuits, e.g. [44–57]. Below, we introduce
the model and present our main results, while the sup-
plemental material (SM) [58] contains additional details.

Floquet-East model.— We consider a chain of 2L
sites with a binary variable (or classical spin) per site
ni 2 {0, 1}, with the site labels i taking half-integer val-
ues, i 2 {
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2 , . . . , L}. Relevant statistical states are
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n P (n) = 1 (with
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crete, staggered in terms of two half time-steps given by
the deterministic maps U e and Uo,
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The maps U e and Uo consist of two-site gates u applied
either to even or odd pairs of neighbouring sites,

U e = u⌦L, Uo = ⇧Lu
⌦L⇧†

L, (2)

where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,

u =
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where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate

ũ :=
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and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as

:=


1
1

�
, :=

⇥
1 1

⇤
, = , = , (4)

where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,

:=
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From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey

= , = , (6)
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viations, an optimal geometry to accommodate space-
time solutes, and the dynamical analog of “hydrophobic
collapse”. While we consider the evolution of classical
configurations, since the dynamics is unitary our results
should also connect to the ongoing interest in the dynam-
ics of quantum circuits, e.g. [44–57]. Below, we introduce
the model and present our main results, while the sup-
plemental material (SM) [58] contains additional details.

Floquet-East model.— We consider a chain of 2L
sites with a binary variable (or classical spin) per site
ni 2 {0, 1}, with the site labels i taking half-integer val-
ues, i 2 {
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2 , 1,
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2 , . . . , L}. Relevant statistical states are

probability vectors |P i :=
P

n |niP (n), where {|ni :=
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i ⌦ |n1i ⌦ · · · ⌦ |nLi} is the configurational basis,

P (n) � 0 8n, and h�|P i =
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n P (n) = 1 (with
h�| :=

P
n hn| the “flat state”). The dynamics is dis-

crete, staggered in terms of two half time-steps given by
the deterministic maps U e and Uo,

|Pt+1i = U e
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2
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|Pti , t 2 N. (1)

The maps U e and Uo consist of two-site gates u applied
either to even or odd pairs of neighbouring sites,

U e = u⌦L, Uo = ⇧Lu
⌦L⇧†

L, (2)

where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,

u =
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where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate

ũ :=
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and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as

:=


1
1
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, :=

⇥
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where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,

:=
⇥
1 1

⇤
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From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey

= , = , (6)
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a first-order phase transition in the dynamical large de-
viations, an optimal geometry to accommodate space-
time solutes, and the dynamical analog of “hydrophobic
collapse”. While we consider the evolution of classical
configurations, since the dynamics is unitary our results
should also connect to the ongoing interest in the dynam-
ics of quantum circuits, e.g. [44–57]. Below, we introduce
the model and present our main results, while the sup-
plemental material (SM) [58] contains additional details.

Floquet-East model.— We consider a chain of 2L
sites with a binary variable (or classical spin) per site
ni 2 {0, 1}, with the site labels i taking half-integer val-
ues, i 2 {
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2 , 1,
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2 , . . . , L}. Relevant statistical states are

probability vectors |P i :=
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n |niP (n), where {|ni :=
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i ⌦ |n1i ⌦ · · · ⌦ |nLi} is the configurational basis,
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n P (n) = 1 (with
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crete, staggered in terms of two half time-steps given by
the deterministic maps U e and Uo,
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2
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The maps U e and Uo consist of two-site gates u applied
either to even or odd pairs of neighbouring sites,

U e = u⌦L, Uo = ⇧Lu
⌦L⇧†

L, (2)

where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,

u =
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where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate
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2

64

1 0 0 0
0 0 0 1
0 0 0 1
1 0 0 0

3

75 , hn n0
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and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as

:=


1
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, :=
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where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,
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From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey
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a first-order phase transition in the dynamical large de-
viations, an optimal geometry to accommodate space-
time solutes, and the dynamical analog of “hydrophobic
collapse”. While we consider the evolution of classical
configurations, since the dynamics is unitary our results
should also connect to the ongoing interest in the dynam-
ics of quantum circuits, e.g. [44–57]. Below, we introduce
the model and present our main results, while the sup-
plemental material (SM) [58] contains additional details.
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The maps U e and Uo consist of two-site gates u applied
either to even or odd pairs of neighbouring sites,

U e = u⌦L, Uo = ⇧Lu
⌦L⇧†

L, (2)

where ⇧L is a one-site shift operator for a chain of 2L
sites with periodic boundaries. The local gate u imple-
ments the deterministic East model rule: a spin flips if
the rightmost neighbour — i.e. the one to the east — is
in the state 1, or stays the same otherwise,

u =

2

64

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

3

75 , hn0 m0
|u|n mi =:

n0 m0

n m

where our convention is |0i = [1 0]T and |1i = [0 1]T . The
graphical representation of u introduced above allows to
interpret the dynamics as a tensor network, see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives
the evolved state as a tensor network.

The Floquet-East model can also be thought of as a
cellular automaton (CA), specifically Rule 60 in the clas-
sification of Refs. [26, 27]. In contrast to other recently
studied CAs such as Rule 54 [59–67], Rule 201 [68, 69]
and Rule 150 [70–72], Rule 60 appears to be chaotic
rather than integrable. Fig. 1(c) shows a trajectory of
the model starting from a random initial configuration:
the chaotic nature of the dynamics is evident, with dy-
namical fluctuations highly reminiscent of the dynamic
heterogeneity and “space-time bubbles” of the stochastic
(and continuous-time) East model [73].

Propagation in space and invariant states.— The
definitions above describe the time evolution (down to
up in Fig. 1) of configurations. Alternatively, one can
consider also how a row pseudo-probability vector [74]
hP̃x| over spins at a fixed point in space x and all times is

propagated in space, hP̃x+1| = hP̃x| Ũ (from left to right
in Fig. 1) under the dual operator Ũ = ŨoŨ e, through
the composition of the local gate

ũ :=
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and similarly defined evolution of a column vector |P̃xi

as |P̃x�1i = ŨoŨ e
|P̃xi.

The time-dynamics is deterministic and reversible (i.e.
a special case of bi-stochastic dynamics), which implies
that the flat state is invariant under both the time-
evolution and its inverse. This is a local property of the
gate u and can be stated graphically (see [58] for the
details) as

:=


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, :=
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where e.g. the last relation is [1 1 1 1]u = [1 1 1 1].
Similarly, the invariant states of the space dynamics [75]
follow from a set of local algebraic relations satisfied by
the local gates,

:=
⇥
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, :=
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From here we get that invariant states in space are, in
the forward direction (left to right) the “dimerised state”
obtained from the tensor product of (with appro-
priate boundaries, see below), and in the backward di-
rection (right to left) the flat state. This is consistent
with the space dynamics under Ũ being (right) stochas-
tic, and is reminiscent of dual-unitarity [50, 76, 77] (see
also e.g., [49, 57, 78–89]) in the quantum setting.

Probability of inactive space-time regions.— Rela-
tions Eqs. (4) and (5) allow us to compute exactly several
dynamical properties. Even though the dynamics is de-
terministic, if we consider a region of space-time of size
l ⇥ t inside a larger space-time box L⇥ T , the dynamics
of the region is probabilistic as the rest of the system
acts as an environment, and the interaction between the
finite region and the rest is precisely described in terms
of the invariant states introduced above [90]. As a first
question, we consider the probability Pinact(l, t) of hav-
ing no spin-flips in that space-time region. As is shown
in Fig. 2(a), for L, T ! 1 the rest of the circuit can be
contracted to the boundary of the region. The probabil-
ity Pinact(l, t) is then obtained by contracting the region
of inactive gates shown in Fig. 2(a), while the prefactor
2�(2l+btc) is determined as the factor needed to normalise
to 1 the same region in the absence of conditioning. The
inactive gates obey

= , = , (6)
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Shocks & entropy production

self averaging
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Shocks & entropy production
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Non-linear fluctuating HD
fluct. on stationary background:
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FIG. 4. KPZ super-diffusion in deterministic circuits with one conserved quantity, illustrated with gate (d, �) = (3, 996). (a)
Super-diffusive scaling of the full-width half maximum (FWHM) of the correlation function hq(x, t)q(0, 0)ic�=0 obtained from
microscopic numerics (red crosses, L = 214 and averaged over 106 samples), consistent with t2/3 scaling (purple line). (b) Data
collapse of hq(x, t)q(0, 0)ic�=0, which also converges to the universal KPZ function fKPZ (red line). (c) Theoretical prediction of
the super-diffusive constant �B (blue line) compared to the value extracted from the numerics (orange markers, L = 103 and
averaged over 106 samples).
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FIG. 5. Coexistence of diffusion and KPZ superdiffusion in deterministic circuits, illustrated with gate (d, �) = (3, 1092). At
special point q⇤ =

p
3 sin(⇡/9), (a) the correlations show diffusive t1/2 scaling, and (b) converge to a standard normal N (0, 1)

when suitably scaled with the diffusion, D = 0.91690(1), and height, C0 = 0.17840(1), constants. (c) Away from q⇤, the correla-
tions show superdiffusion.

constant is (Sec. E of SM [27])

�B =
p

2C|⌘00(q0)|. (22)

In Fig. 4, we compare theoretical predictions to micro-
scopic numerics for (d, �) = (3, 996) to excellent agree-
ment.

Note that gates with |⌘00(q⇤)| = 0 for some q⇤ can
host both diffusive and superdiffusion correlations. At
q⇤ the superdiffusion constant goes to zero and we pre-
dict diffusive correlations. For example, the SG (d, �) =

(3, 1092), with rules

|00i ! |00i |01i ! |10i |02i ! |20i
|10i ! |01i |11i ! |11i |12i ! |12i
|20i ! |02i |21i ! |21i |22i ! |22i

(23)

and SCQ hfe| = � 1
2 h0|, hfo| = 1

2 h1| + h2|, has diffu-
sive correlations at q⇤ =

p
3 sin(⇡/9), and superdiffu-

sive correlations elsewhere, see Fig. 5. More precisely,
if |q � q⇤| ⇠ � is small but finite, then diffusive phe-
nomenology will only be a transient effect until times
of order ⇠ 1/�4 [36], after which it is overtaken by KPZ
superdiffusion.
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FIG. 5. Coexistence of diffusion and KPZ superdiffusion in deterministic circuits, illustrated with gate (d, �) = (3, 1092). At
special point q⇤ =

p
3 sin(⇡/9), (a) the correlations show diffusive t1/2 scaling, and (b) converge to a standard normal N (0, 1)

when suitably scaled with the diffusion, D = 0.91690(1), and height, C0 = 0.17840(1), constants. (c) Away from q⇤, the correla-
tions show superdiffusion.

constant is (Sec. E of SM [27])

�B =
p

2C|⌘00(q0)|. (22)

In Fig. 4, we compare theoretical predictions to micro-
scopic numerics for (d, �) = (3, 996) to excellent agree-
ment.

Note that gates with |⌘00(q⇤)| = 0 for some q⇤ can
host both diffusive and superdiffusion correlations. At
q⇤ the superdiffusion constant goes to zero and we pre-
dict diffusive correlations. For example, the SG (d, �) =

(3, 1092), with rules

|00i ! |00i |01i ! |10i |02i ! |20i
|10i ! |01i |11i ! |11i |12i ! |12i
|20i ! |02i |21i ! |21i |22i ! |22i

(23)

and SCQ hfe| = � 1
2 h0|, hfo| = 1

2 h1| + h2|, has diffu-
sive correlations at q⇤ =

p
3 sin(⇡/9), and superdiffu-

sive correlations elsewhere, see Fig. 5. More precisely,
if |q � q⇤| ⇠ � is small but finite, then diffusive phe-
nomenology will only be a transient effect until times
of order ⇠ 1/�4 [36], after which it is overtaken by KPZ
superdiffusion.
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FIG. 5. Coexistence of diffusion and KPZ superdiffusion in deterministic circuits, illustrated with gate (d, �) = (3, 1092). At
special point q⇤ =

p
3 sin(⇡/9), (a) the correlations show diffusive t1/2 scaling, and (b) converge to a standard normal N (0, 1)

when suitably scaled with the diffusion, D = 0.91690(1), and height, C0 = 0.17840(1), constants. (c) Away from q⇤, the correla-
tions show superdiffusion.

constant is (Sec. E of SM [27])

�B =
p

2C|⌘00(q0)|. (22)

In Fig. 4, we compare theoretical predictions to micro-
scopic numerics for (d, �) = (3, 996) to excellent agree-
ment.

Note that gates with |⌘00(q⇤)| = 0 for some q⇤ can
host both diffusive and superdiffusion correlations. At
q⇤ the superdiffusion constant goes to zero and we pre-
dict diffusive correlations. For example, the SG (d, �) =

(3, 1092), with rules

|00i ! |00i |01i ! |10i |02i ! |20i
|10i ! |01i |11i ! |11i |12i ! |12i
|20i ! |02i |21i ! |21i |22i ! |22i

(23)

and SCQ hfe| = � 1
2 h0|, hfo| = 1

2 h1| + h2|, has diffu-
sive correlations at q⇤ =

p
3 sin(⇡/9), and superdiffu-

sive correlations elsewhere, see Fig. 5. More precisely,
if |q � q⇤| ⇠ � is small but finite, then diffusive phe-
nomenology will only be a transient effect until times
of order ⇠ 1/�4 [36], after which it is overtaken by KPZ
superdiffusion.
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(d,�) = (3,996) : 
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j00(q) 6= 0 → KPZ:

<latexit sha1_base64="gb1Zm9IISdzEDU3ztG4jBdIZdHI="></latexit>

L = 214

samples = 106

{Spohn 2014}



Non-linear fluctuating HD
fluct. on stationary background:
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q(�, t) = q0 + �q(�, t)
<latexit sha1_base64="cnZ39wXpqw8OR22oOJ0noF6G8+A="></latexit>

q0 = hqi�
<latexit sha1_base64="uhelA6/7z2eYq+73sFCvVz5ZSvE="></latexit>

�t�q + j0(q0) ���q +
1

2
j00(q0) ���q2 + (diffusion) + (noise) = 0

<latexit sha1_base64="WEwE+44qyVFBSjU6PAln7lkA2Qc="></latexit>

� =
q
2h�q2i� j00(q0)

<latexit sha1_base64="L857Xw813R78EA+wB5Guag9cX8g="></latexit>

h�q(�, t)�q(0,0)i =
h�q2i�
(�t)2/3

ƒKPZ

✓ � � �t
(�t)2/3

◆
with→ KPZ:
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averaged over 106 samples).
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FIG. 5. Coexistence of diffusion and KPZ superdiffusion in deterministic circuits, illustrated with gate (d, �) = (3, 1092). At
special point q⇤ =

p
3 sin(⇡/9), (a) the correlations show diffusive t1/2 scaling, and (b) converge to a standard normal N (0, 1)

when suitably scaled with the diffusion, D = 0.91690(1), and height, C0 = 0.17840(1), constants. (c) Away from q⇤, the correla-
tions show superdiffusion.

constant is (Sec. E of SM [27])

�B =
p

2C|⌘00(q0)|. (22)

In Fig. 4, we compare theoretical predictions to micro-
scopic numerics for (d, �) = (3, 996) to excellent agree-
ment.

Note that gates with |⌘00(q⇤)| = 0 for some q⇤ can
host both diffusive and superdiffusion correlations. At
q⇤ the superdiffusion constant goes to zero and we pre-
dict diffusive correlations. For example, the SG (d, �) =

(3, 1092), with rules

|00i ! |00i |01i ! |10i |02i ! |20i
|10i ! |01i |11i ! |11i |12i ! |12i
|20i ! |02i |21i ! |21i |22i ! |22i

(23)

and SCQ hfe| = � 1
2 h0|, hfo| = 1

2 h1| + h2|, has diffu-
sive correlations at q⇤ =

p
3 sin(⇡/9), and superdiffu-

sive correlations elsewhere, see Fig. 5. More precisely,
if |q � q⇤| ⇠ � is small but finite, then diffusive phe-
nomenology will only be a transient effect until times
of order ⇠ 1/�4 [36], after which it is overtaken by KPZ
superdiffusion.
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when suitably scaled with the diffusion, D = 0.91690(1), and height, C0 = 0.17840(1), constants. (c) Away from q⇤, the correla-
tions show superdiffusion.

constant is (Sec. E of SM [27])

�B =
p

2C|⌘00(q0)|. (22)

In Fig. 4, we compare theoretical predictions to micro-
scopic numerics for (d, �) = (3, 996) to excellent agree-
ment.

Note that gates with |⌘00(q⇤)| = 0 for some q⇤ can
host both diffusive and superdiffusion correlations. At
q⇤ the superdiffusion constant goes to zero and we pre-
dict diffusive correlations. For example, the SG (d, �) =

(3, 1092), with rules

|00i ! |00i |01i ! |10i |02i ! |20i
|10i ! |01i |11i ! |11i |12i ! |12i
|20i ! |02i |21i ! |21i |22i ! |22i

(23)

and SCQ hfe| = � 1
2 h0|, hfo| = 1

2 h1| + h2|, has diffu-
sive correlations at q⇤ =

p
3 sin(⇡/9), and superdiffu-

sive correlations elsewhere, see Fig. 5. More precisely,
if |q � q⇤| ⇠ � is small but finite, then diffusive phe-
nomenology will only be a transient effect until times
of order ⇠ 1/�4 [36], after which it is overtaken by KPZ
superdiffusion.
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I. BLOCK CELLULAR AUTOMATA
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FIG. 1. Some block cellular automata, also known as classical brickwork circuits studied in this work for D = 1 spatial dimensions,
d = 3 local state space for permutation indices � = 996, 2312, 2316, 229177, 240726. All of these automata have conserved
quantities, some of which are obvious (ex. number of 2s in the case of � = 2312, 2316), some of which are not (ex. number of
either 1 or 2s on even sites and number of 0s on the odd sites for � = 229177).

In this work we consider reversible block cellular automata with Margolus neighborhoods [1], also referred to as
brickwork ‘classical circuits’ in recent non-equilibrium stat-mech literature [2]. We consider one spatial dimension,
but generalisation to higher dimensions is straightforward. Consider discrete states a 2 D of state space D =
{0, 1, · · · , d � 1}, and an element of the permutation group � 2 Sd2 . We will sometimes overload � to denote the
index of the permutation in the permutation group as well. In Fig. 1, we illustrate various automata/gates for D = 1,
d = 3. As we will find, all of these gates have conserved quantities.

Treating a pair of input states (a, b) as a single element, We define a permutation gate u(�) as a map from a pair of
input states (a, b) to its permuted pair, (�1(a, b),�2(a, b)). Denoting a state in ket notation |ai, the permutation gate
can be written as

u =
X

a,b

|�1(a, b),�2(a, b)iha, b|. (1)

Throughout, we will go back and forth between Dirac and tensor network notation. In the latter language we have

h�(a, b)|u |a, bi =

a b

�1(a, b) �2(a, b)

. (2)
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Interplay of solvability and conserved quantities in classical circuits
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Then the following computational graph calculates the probability of an inactive region of size l ⇥ t:

pinactive(l, t;L, T ) =
1

dL
⇥ .
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where Cdisc =
P

i even hqi,⌧q0,0ic� . Now Cdisc is related to Ccont as

Cdisc =
1

�x

X

i even

�x hqi,⌧q0,0ic� (41)

=
1

�x

Z
dx hq(x, 0)q(0, 0)ic� (42)

=
1

2a

Z
dx hq(x, 0)q(0, 0)ic� =

Ccont

2a
. (43)

Now hqi,⌧q0,0ic� = h�qi,⌧�q0,0ic� = Ccont h�(ia, ⌧a),�(0, 0)ic� , so we have

Ddisc
i,⌧ =

Ccont

Cdisc
h�(ia, ⌧a),�(0, 0)ic� = 2a h�(ia, ⌧a),�(0, 0)ic� (44)

=
2a

(�Ba⌧)2/3
fKPZ

✓
ia

(�B⌧a)2/3

◆
(45)

where �B = 2
p
aCdisc|j00(q0)|. Finally, we can work in units where a = 1 to find

Ddisc
i,⌧ =

2

(2
p
Cdisc|j00(q0)|⌧)2/3

fKPZ

✓
i

(2
p
Cdisc|j00(q0)|⌧)2/3

◆
. (46)

For example we predict that the peak will evolve with time as

maxiD
disc
i,⌧ =

2

(�B⌧)2/3
fKPZ (0) , (47)

where fKPZ(0) ⇡ 0.54 and �B = 2
p
Cdisc|j00(q0)|. From this, we should find that the peak scale as ⌧�2/3. We should

also be able to predict the superdiffusion constant �B. Next, the width of the distribution (full-width-half-maximum
FWHM will work better than variance) should scale as ⌧�2/3 also. Lastly, we should be able to fit the universal KPZ
function.

RESULTS

For D = 1, there are (22)! = 24 gates for d = 2. Here we verified that gates either have a) only one conserved
quantity, ex. the East model (d,�) = (2, 5), or more and more conserved quantities as l is increased, such as the
SWAP gate. For d = 3, there are (32)! = 362880 possible gates. For these it is still possible to exhaustively search
through them. For d = 4 there are (24)! = 2.092279 ⇥ 1013 gates, which rules out an exhaustive search.

For D = 2, there are already (22⇥2)! gates, which is the same as that for (D, d) = (1, 4). Therefore we reduce the
search space to gates that conserve the number of 1s. This fragments the space into 0, 1, 2, 3, and 4 particle sectors,
resulting in a managable 1! 4! 6! 4! 1! = 414720 gates.

Below we present some representative examples of results obtained with our method.

D = 1, d = 3, � = 996

For this gate, the transition rules are given by

|00i ! |00i |01i ! |01i |02i ! |10i
|10i ! |12i |11i ! |11i |12i ! |21i
|20i ! |02i |21i ! |20i |22i ! |22i.

(48)

Up to l = 2, Nk = 4, N✏ = 4, we find exactly one conserved quantity on a single site with k = ✏ = 0 and ± = +,

hfe| = h1| , hfo| = � h0| , (49)
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OTHER HYDRODYNAMIC PHENOMENOLOGY

Our search of d = 3 gates reveals a wealth of other hy-
drodynamic phenomenology. We discuss representative
gates of some below.
• Staggered conserved quantities. Gates with CQs with
nontrivial periodicities m, n > 1 exist. An example is
(d, �) = (3, 229117), with rules

|00i ! |12i |01i ! |22i |02i ! |20i
|10i ! |02i |11i ! |00i |12i ! |10i
|20i ! |01i |21i ! |11i |22i ! |21i .

(24)

Here, there is one SCQ,

hf (1)
e | = h1| + h2| , hf (1)

o | = h0| + 2 h1| + h2| , (25)

and a second CQ with µ2 = �2 = ei⇡/2,

hf (2)
e | = h0| � h1| + h2| , hf (2)

o | = h1| + 2 h2| , (26)

meaning it is conserved only after n2 = 4 timesteps and
is periodic over m2 = 4 translations. To confirm that
there are only two CQs in this circuit, we choose three
observables (A4, B4, C4) on randomly sampled initial
states, and plot their thermal expectation values. As
shown in Fig. 2(b), these values lie on a two-dimensional
surface as predicted by theory, Eq. (7). Since Eq. (26)
changes sign every two sites, if the sampled initial
states are spatially period-2, the hydrodynamics decou-
ples [37] and the data falls on a one-dimensional curve,
corresponding to the �2 = 0 predictions. In comparison,
for (d, �) = (3, 996), both period-2 and period-4 initial
states lie on a one-dimensional curve, as Fig. 2(a).
• Fermi–Pasta–Ulam–Tsingou (FPUT) phenomenol-
ogy. The SCQ of SG (d, �) = (3, 2312) with rules

|00i ! |00i |01i ! |01i |02i ! |12i
|10i ! |10i |11i ! |11i |12i ! |20i
|20i ! |21i |21i ! |02i |22i ! |22i,

(27)

is hfe,o| = h2|, i.e. it conserved the number of |2is.
Eq. (11) predicts ⌘(q) = ⌘00(q) = 0 and therefore diffu-
sive correlations. However, at low densities, preclud-
ing this diffusive effect, there is a transient state that is
characteristic of integrability. It is similar to the FPUT
phenomenology typically observed in one-dimensional
systems with energy and momentum conservation [38].

Indeed, looking the trajectories of |2is, at two-body
collisions, they pass through each other (SM Sec. F [27]),
as left of Fig. 6(a). This is similar to what happens by en-
ergy and momentum conservation in Hamiltonian par-
ticle systems. Only when three or more |2is meet is there
a non-trivial interaction that breaks their linear trajec-
tories, as right of Fig. 6(a). This facilitates the even-
tual diffusion. Therefore, at low density of |2i’s and

short timescales, all trajectories are ballistic as in inte-
grable systems, only becoming diffusive at later times,
see Fig. 6(b).

• Anomalous current fluctuations. Shocks and KPZ
superdiffusion are observed in generic hydrodynamic
equations. However, in certain systems satisfying lin-
ear degeneracy conditions [39], shock formation is ab-
sent [20]. This includes models with vanishing currents,
such as circuit (d, �) = (3, 2312) discussed previously,
but also integrable systems. In linear degenerate sys-
tems, corrections to Euler hydrodynamics are typically
expected to be diffusive [40]. However, more nuanced
universal behavior can emerge. Recently, there has been
interest in anomalous diffusion due to anomalous cur-
rent fluctuations. This behavior has also been observed
classical brickwork circuits in Refs. [41, 42], which cor-
respond to (d, �) = (3, 12990) in our notation.

OUTLOOK

In this paper we introduced powerful but straight-
forward methods to deduce the conserved quantities of
classical deterministic brickwork circuits and their ex-
act hydrodynamic equations. Harnessing the efficiency
of performing microscopic simulations of such circuits,
we convincingly verified the hydrodynamic predictions.
As an important example, we described the behaviour
of circuit (d, �) = (3, 996), to our knowledge the first
case of a deterministic, closed system with a single con-
served quantity whose microscopics yield the Burgers
equation and KPZ superdiffusion correlations at large
scales. We stress the simplicity and generality of our
setting here, compared to the complications in the very
few other deterministic interacting models (integrable
systems and certain classical 1D chains) where such for-
mulations are possible [3]. One reason for this simplic-
ity is the breaking of time-translation invariance in our
circuits. Looking forward, this circuit approach should
help understand all aspects of hydrodynamic theories to
finally prove their emergence from microscopics.

The techniques we developed readily extend to
higher-dimensional and to quantum circuits. In the
quantum case, the continuum of possible two-body
gates would allow to mimic the behavior of Hamilto-
nian systems with a smoothly-varying external poten-
tial. Hydrodynamic theories for quantum circuits are
particularly interesting as they provide a way to bench-
mark the performance of quantum computers at large
scale [43]. Since hydrodynamic evolution in D > 1
generically displays turbulence rather than shocks, an
important avenue for research is to find simple circuit
models that can provide insight into the poorly under-
stood physics of turbulence [1].
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rent fluctuations. This behavior has also been observed
classical brickwork circuits in Refs. [41, 42], which cor-
respond to (d, �) = (3, 12990) in our notation.

OUTLOOK

In this paper we introduced powerful but straight-
forward methods to deduce the conserved quantities of
classical deterministic brickwork circuits and their ex-
act hydrodynamic equations. Harnessing the efficiency
of performing microscopic simulations of such circuits,
we convincingly verified the hydrodynamic predictions.
As an important example, we described the behaviour
of circuit (d, �) = (3, 996), to our knowledge the first
case of a deterministic, closed system with a single con-
served quantity whose microscopics yield the Burgers
equation and KPZ superdiffusion correlations at large
scales. We stress the simplicity and generality of our
setting here, compared to the complications in the very
few other deterministic interacting models (integrable
systems and certain classical 1D chains) where such for-
mulations are possible [3]. One reason for this simplic-
ity is the breaking of time-translation invariance in our
circuits. Looking forward, this circuit approach should
help understand all aspects of hydrodynamic theories to
finally prove their emergence from microscopics.

The techniques we developed readily extend to
higher-dimensional and to quantum circuits. In the
quantum case, the continuum of possible two-body
gates would allow to mimic the behavior of Hamilto-
nian systems with a smoothly-varying external poten-
tial. Hydrodynamic theories for quantum circuits are
particularly interesting as they provide a way to bench-
mark the performance of quantum computers at large
scale [43]. Since hydrodynamic evolution in D > 1
generically displays turbulence rather than shocks, an
important avenue for research is to find simple circuit
models that can provide insight into the poorly under-
stood physics of turbulence [1].
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Our search of d = 3 gates reveals a wealth of other hy-
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gates of some below.
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there are only two CQs in this circuit, we choose three
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corresponding to the �2 = 0 predictions. In comparison,
for (d, �) = (3, 996), both period-2 and period-4 initial
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is hfe,o| = h2|, i.e. it conserved the number of |2is.
Eq. (11) predicts ⌘(q) = ⌘00(q) = 0 and therefore diffu-
sive correlations. However, at low densities, preclud-
ing this diffusive effect, there is a transient state that is
characteristic of integrability. It is similar to the FPUT
phenomenology typically observed in one-dimensional
systems with energy and momentum conservation [38].

Indeed, looking the trajectories of |2is, at two-body
collisions, they pass through each other (SM Sec. F [27]),
as left of Fig. 6(a). This is similar to what happens by en-
ergy and momentum conservation in Hamiltonian par-
ticle systems. Only when three or more |2is meet is there
a non-trivial interaction that breaks their linear trajec-
tories, as right of Fig. 6(a). This facilitates the even-
tual diffusion. Therefore, at low density of |2i’s and

short timescales, all trajectories are ballistic as in inte-
grable systems, only becoming diffusive at later times,
see Fig. 6(b).

• Anomalous current fluctuations. Shocks and KPZ
superdiffusion are observed in generic hydrodynamic
equations. However, in certain systems satisfying lin-
ear degeneracy conditions [39], shock formation is ab-
sent [20]. This includes models with vanishing currents,
such as circuit (d, �) = (3, 2312) discussed previously,
but also integrable systems. In linear degenerate sys-
tems, corrections to Euler hydrodynamics are typically
expected to be diffusive [40]. However, more nuanced
universal behavior can emerge. Recently, there has been
interest in anomalous diffusion due to anomalous cur-
rent fluctuations. This behavior has also been observed
classical brickwork circuits in Refs. [41, 42], which cor-
respond to (d, �) = (3, 12990) in our notation.

OUTLOOK

In this paper we introduced powerful but straight-
forward methods to deduce the conserved quantities of
classical deterministic brickwork circuits and their ex-
act hydrodynamic equations. Harnessing the efficiency
of performing microscopic simulations of such circuits,
we convincingly verified the hydrodynamic predictions.
As an important example, we described the behaviour
of circuit (d, �) = (3, 996), to our knowledge the first
case of a deterministic, closed system with a single con-
served quantity whose microscopics yield the Burgers
equation and KPZ superdiffusion correlations at large
scales. We stress the simplicity and generality of our
setting here, compared to the complications in the very
few other deterministic interacting models (integrable
systems and certain classical 1D chains) where such for-
mulations are possible [3]. One reason for this simplic-
ity is the breaking of time-translation invariance in our
circuits. Looking forward, this circuit approach should
help understand all aspects of hydrodynamic theories to
finally prove their emergence from microscopics.

The techniques we developed readily extend to
higher-dimensional and to quantum circuits. In the
quantum case, the continuum of possible two-body
gates would allow to mimic the behavior of Hamilto-
nian systems with a smoothly-varying external poten-
tial. Hydrodynamic theories for quantum circuits are
particularly interesting as they provide a way to bench-
mark the performance of quantum computers at large
scale [43]. Since hydrodynamic evolution in D > 1
generically displays turbulence rather than shocks, an
important avenue for research is to find simple circuit
models that can provide insight into the poorly under-
stood physics of turbulence [1].
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FIG. 6. FPUT phenomenology in deterministic circuits, il-
lustrated with gate (d, �) = (3, 2312). (a) Trajectories of colli-
sions between |2is in a bath of |0is and |1is. For two-particle
collisions, the |2is conserve momentum (left). For three-or-
more particle collisions, momentum is not conserved in gen-
eral (right). (b) Due to approximate integrability at low fill-
ings, the correlations (white lines) show ballistic ⇠ t spreading
at early times (dashed yellow lines). Eventually, the three-or-
more particle collisions facilitate diffusive ⇠ t1/2 correlations
(dashed red lines). Here, � = �1.5, and simulations were car-
ried out with L = 216 and T = 214 and averaged over 104

samples.
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I. BLOCK CELLULAR AUTOMATA
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FIG. 1. Some block cellular automata, also known as classical brickwork circuits studied in this work for D = 1 spatial dimensions,
d = 3 local state space for permutation indices � = 996, 2312, 2316, 229177, 240726. All of these automata have conserved
quantities, some of which are obvious (ex. number of 2s in the case of � = 2312, 2316), some of which are not (ex. number of
either 1 or 2s on even sites and number of 0s on the odd sites for � = 229177).

In this work we consider reversible block cellular automata with Margolus neighborhoods [1], also referred to as
brickwork ‘classical circuits’ in recent non-equilibrium stat-mech literature [2]. We consider one spatial dimension,
but generalisation to higher dimensions is straightforward. Consider discrete states a 2 D of state space D =
{0, 1, · · · , d � 1}, and an element of the permutation group � 2 Sd2 . We will sometimes overload � to denote the
index of the permutation in the permutation group as well. In Fig. 1, we illustrate various automata/gates for D = 1,
d = 3. As we will find, all of these gates have conserved quantities.

Treating a pair of input states (a, b) as a single element, We define a permutation gate u(�) as a map from a pair of
input states (a, b) to its permuted pair, (�1(a, b),�2(a, b)). Denoting a state in ket notation |ai, the permutation gate
can be written as

u =
X

a,b

|�1(a, b),�2(a, b)iha, b|. (1)

Throughout, we will go back and forth between Dirac and tensor network notation. In the latter language we have

h�(a, b)|u |a, bi =

a b

�1(a, b) �2(a, b)

. (2)
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Then the following computational graph calculates the probability of an inactive region of size l ⇥ t:

pinactive(l, t;L, T ) =
1

dL
⇥ .
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where Cdisc =
P

i even hqi,⌧q0,0ic� . Now Cdisc is related to Ccont as

Cdisc =
1

�x

X

i even

�x hqi,⌧q0,0ic� (41)

=
1

�x

Z
dx hq(x, 0)q(0, 0)ic� (42)

=
1

2a

Z
dx hq(x, 0)q(0, 0)ic� =

Ccont

2a
. (43)

Now hqi,⌧q0,0ic� = h�qi,⌧�q0,0ic� = Ccont h�(ia, ⌧a),�(0, 0)ic� , so we have

Ddisc
i,⌧ =

Ccont

Cdisc
h�(ia, ⌧a),�(0, 0)ic� = 2a h�(ia, ⌧a),�(0, 0)ic� (44)

=
2a

(�Ba⌧)2/3
fKPZ

✓
ia

(�B⌧a)2/3

◆
(45)

where �B = 2
p
aCdisc|j00(q0)|. Finally, we can work in units where a = 1 to find

Ddisc
i,⌧ =

2

(2
p
Cdisc|j00(q0)|⌧)2/3

fKPZ

✓
i

(2
p
Cdisc|j00(q0)|⌧)2/3

◆
. (46)

For example we predict that the peak will evolve with time as

maxiD
disc
i,⌧ =

2

(�B⌧)2/3
fKPZ (0) , (47)

where fKPZ(0) ⇡ 0.54 and �B = 2
p
Cdisc|j00(q0)|. From this, we should find that the peak scale as ⌧�2/3. We should

also be able to predict the superdiffusion constant �B. Next, the width of the distribution (full-width-half-maximum
FWHM will work better than variance) should scale as ⌧�2/3 also. Lastly, we should be able to fit the universal KPZ
function.

RESULTS

For D = 1, there are (22)! = 24 gates for d = 2. Here we verified that gates either have a) only one conserved
quantity, ex. the East model (d,�) = (2, 5), or more and more conserved quantities as l is increased, such as the
SWAP gate. For d = 3, there are (32)! = 362880 possible gates. For these it is still possible to exhaustively search
through them. For d = 4 there are (24)! = 2.092279 ⇥ 1013 gates, which rules out an exhaustive search.

For D = 2, there are already (22⇥2)! gates, which is the same as that for (D, d) = (1, 4). Therefore we reduce the
search space to gates that conserve the number of 1s. This fragments the space into 0, 1, 2, 3, and 4 particle sectors,
resulting in a managable 1! 4! 6! 4! 1! = 414720 gates.

Below we present some representative examples of results obtained with our method.

D = 1, d = 3, � = 996

For this gate, the transition rules are given by

|00i ! |00i |01i ! |01i |02i ! |10i
|10i ! |12i |11i ! |11i |12i ! |21i
|20i ! |02i |21i ! |20i |22i ! |22i.

(48)

Up to l = 2, Nk = 4, N✏ = 4, we find exactly one conserved quantity on a single site with k = ✏ = 0 and ± = +,

hfe| = h1| , hfo| = � h0| , (49)
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OTHER HYDRODYNAMIC PHENOMENOLOGY

Our search of d = 3 gates reveals a wealth of other hy-
drodynamic phenomenology. We discuss representative
gates of some below.
• Staggered conserved quantities. Gates with CQs with
nontrivial periodicities m, n > 1 exist. An example is
(d, �) = (3, 229117), with rules

|00i ! |12i |01i ! |22i |02i ! |20i
|10i ! |02i |11i ! |00i |12i ! |10i
|20i ! |01i |21i ! |11i |22i ! |21i .

(24)

Here, there is one SCQ,

hf (1)
e | = h1| + h2| , hf (1)

o | = h0| + 2 h1| + h2| , (25)

and a second CQ with µ2 = �2 = ei⇡/2,

hf (2)
e | = h0| � h1| + h2| , hf (2)

o | = h1| + 2 h2| , (26)

meaning it is conserved only after n2 = 4 timesteps and
is periodic over m2 = 4 translations. To confirm that
there are only two CQs in this circuit, we choose three
observables (A4, B4, C4) on randomly sampled initial
states, and plot their thermal expectation values. As
shown in Fig. 2(b), these values lie on a two-dimensional
surface as predicted by theory, Eq. (7). Since Eq. (26)
changes sign every two sites, if the sampled initial
states are spatially period-2, the hydrodynamics decou-
ples [37] and the data falls on a one-dimensional curve,
corresponding to the �2 = 0 predictions. In comparison,
for (d, �) = (3, 996), both period-2 and period-4 initial
states lie on a one-dimensional curve, as Fig. 2(a).
• Fermi–Pasta–Ulam–Tsingou (FPUT) phenomenol-
ogy. The SCQ of SG (d, �) = (3, 2312) with rules

|00i ! |00i |01i ! |01i |02i ! |12i
|10i ! |10i |11i ! |11i |12i ! |20i
|20i ! |21i |21i ! |02i |22i ! |22i,

(27)

is hfe,o| = h2|, i.e. it conserved the number of |2is.
Eq. (11) predicts ⌘(q) = ⌘00(q) = 0 and therefore diffu-
sive correlations. However, at low densities, preclud-
ing this diffusive effect, there is a transient state that is
characteristic of integrability. It is similar to the FPUT
phenomenology typically observed in one-dimensional
systems with energy and momentum conservation [38].

Indeed, looking the trajectories of |2is, at two-body
collisions, they pass through each other (SM Sec. F [27]),
as left of Fig. 6(a). This is similar to what happens by en-
ergy and momentum conservation in Hamiltonian par-
ticle systems. Only when three or more |2is meet is there
a non-trivial interaction that breaks their linear trajec-
tories, as right of Fig. 6(a). This facilitates the even-
tual diffusion. Therefore, at low density of |2i’s and

short timescales, all trajectories are ballistic as in inte-
grable systems, only becoming diffusive at later times,
see Fig. 6(b).

• Anomalous current fluctuations. Shocks and KPZ
superdiffusion are observed in generic hydrodynamic
equations. However, in certain systems satisfying lin-
ear degeneracy conditions [39], shock formation is ab-
sent [20]. This includes models with vanishing currents,
such as circuit (d, �) = (3, 2312) discussed previously,
but also integrable systems. In linear degenerate sys-
tems, corrections to Euler hydrodynamics are typically
expected to be diffusive [40]. However, more nuanced
universal behavior can emerge. Recently, there has been
interest in anomalous diffusion due to anomalous cur-
rent fluctuations. This behavior has also been observed
classical brickwork circuits in Refs. [41, 42], which cor-
respond to (d, �) = (3, 12990) in our notation.

OUTLOOK

In this paper we introduced powerful but straight-
forward methods to deduce the conserved quantities of
classical deterministic brickwork circuits and their ex-
act hydrodynamic equations. Harnessing the efficiency
of performing microscopic simulations of such circuits,
we convincingly verified the hydrodynamic predictions.
As an important example, we described the behaviour
of circuit (d, �) = (3, 996), to our knowledge the first
case of a deterministic, closed system with a single con-
served quantity whose microscopics yield the Burgers
equation and KPZ superdiffusion correlations at large
scales. We stress the simplicity and generality of our
setting here, compared to the complications in the very
few other deterministic interacting models (integrable
systems and certain classical 1D chains) where such for-
mulations are possible [3]. One reason for this simplic-
ity is the breaking of time-translation invariance in our
circuits. Looking forward, this circuit approach should
help understand all aspects of hydrodynamic theories to
finally prove their emergence from microscopics.

The techniques we developed readily extend to
higher-dimensional and to quantum circuits. In the
quantum case, the continuum of possible two-body
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OTHER HYDRODYNAMIC PHENOMENOLOGY

Our search of d = 3 gates reveals a wealth of other hy-
drodynamic phenomenology. We discuss representative
gates of some below.
• Staggered conserved quantities. Gates with CQs with
nontrivial periodicities m, n > 1 exist. An example is
(d, �) = (3, 229117), with rules

|00i ! |12i |01i ! |22i |02i ! |20i
|10i ! |02i |11i ! |00i |12i ! |10i
|20i ! |01i |21i ! |11i |22i ! |21i .

(24)

Here, there is one SCQ,

hf (1)
e | = h1| + h2| , hf (1)

o | = h0| + 2 h1| + h2| , (25)

and a second CQ with µ2 = �2 = ei⇡/2,

hf (2)
e | = h0| � h1| + h2| , hf (2)

o | = h1| + 2 h2| , (26)

meaning it is conserved only after n2 = 4 timesteps and
is periodic over m2 = 4 translations. To confirm that
there are only two CQs in this circuit, we choose three
observables (A4, B4, C4) on randomly sampled initial
states, and plot their thermal expectation values. As
shown in Fig. 2(b), these values lie on a two-dimensional
surface as predicted by theory, Eq. (7). Since Eq. (26)
changes sign every two sites, if the sampled initial
states are spatially period-2, the hydrodynamics decou-
ples [37] and the data falls on a one-dimensional curve,
corresponding to the �2 = 0 predictions. In comparison,
for (d, �) = (3, 996), both period-2 and period-4 initial
states lie on a one-dimensional curve, as Fig. 2(a).
• Fermi–Pasta–Ulam–Tsingou (FPUT) phenomenol-
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is hfe,o| = h2|, i.e. it conserved the number of |2is.
Eq. (11) predicts ⌘(q) = ⌘00(q) = 0 and therefore diffu-
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ing this diffusive effect, there is a transient state that is
characteristic of integrability. It is similar to the FPUT
phenomenology typically observed in one-dimensional
systems with energy and momentum conservation [38].

Indeed, looking the trajectories of |2is, at two-body
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ticle systems. Only when three or more |2is meet is there
a non-trivial interaction that breaks their linear trajec-
tories, as right of Fig. 6(a). This facilitates the even-
tual diffusion. Therefore, at low density of |2i’s and

short timescales, all trajectories are ballistic as in inte-
grable systems, only becoming diffusive at later times,
see Fig. 6(b).

• Anomalous current fluctuations. Shocks and KPZ
superdiffusion are observed in generic hydrodynamic
equations. However, in certain systems satisfying lin-
ear degeneracy conditions [39], shock formation is ab-
sent [20]. This includes models with vanishing currents,
such as circuit (d, �) = (3, 2312) discussed previously,
but also integrable systems. In linear degenerate sys-
tems, corrections to Euler hydrodynamics are typically
expected to be diffusive [40]. However, more nuanced
universal behavior can emerge. Recently, there has been
interest in anomalous diffusion due to anomalous cur-
rent fluctuations. This behavior has also been observed
classical brickwork circuits in Refs. [41, 42], which cor-
respond to (d, �) = (3, 12990) in our notation.

OUTLOOK

In this paper we introduced powerful but straight-
forward methods to deduce the conserved quantities of
classical deterministic brickwork circuits and their ex-
act hydrodynamic equations. Harnessing the efficiency
of performing microscopic simulations of such circuits,
we convincingly verified the hydrodynamic predictions.
As an important example, we described the behaviour
of circuit (d, �) = (3, 996), to our knowledge the first
case of a deterministic, closed system with a single con-
served quantity whose microscopics yield the Burgers
equation and KPZ superdiffusion correlations at large
scales. We stress the simplicity and generality of our
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FIG. 6. FPUT phenomenology in deterministic circuits, il-
lustrated with gate (d, �) = (3, 2312). (a) Trajectories of colli-
sions between |2is in a bath of |0is and |1is. For two-particle
collisions, the |2is conserve momentum (left). For three-or-
more particle collisions, momentum is not conserved in gen-
eral (right). (b) Due to approximate integrability at low fill-
ings, the correlations (white lines) show ballistic ⇠ t spreading
at early times (dashed yellow lines). Eventually, the three-or-
more particle collisions facilitate diffusive ⇠ t1/2 correlations
(dashed red lines). Here, � = �1.5, and simulations were car-
ried out with L = 216 and T = 214 and averaged over 104

samples.
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Note added. After the first version of our paper was
made public on the arXiv, the preprint Ref. [48] with
some overlap to our findings appeared, which investi-
gates a large subclass of the same d = 3 circuits, focusing
mostly on a complementary set of questions. Among
other results, Ref. [48] finds gates with extensive CQs
with quasi-local densities. This further validates the
richness of these simple systems.
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