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<Q> Outline

@ Why Statistical Inference is important

What is Statistical Inference

@ Hypothesis Testing and Parameter Estimation

Quantum Hypothesis Testing and Parameter Estimation

@ Applications
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W%y statistica/ ﬂnfe’zence s important



<Q>Why Statistical Inference is Important

@ Medical Testing (COVID tests etc..)

Quality Control (Product testing...)

@ Significance of results (Discovery of Higgs boson, p-values...)

Reporting the value of a physical constant (g, c, u.....)



<<<>>>Why Statistical Inference is Important

How to cheat on your Tax Return

@ Consider a dataset of numbers. The leading digit of all the numbers
in the dataset follows Benford’s Law

p(k) = log;, (1 : ;)

The taxperson counts the frequency of first digits in your tax
return and performs a x?-test

” nk—N
Z ]9 ))

k=1

@ If xR is too large, you are cheating.



<<<>>>Why Statistical Inference is Important

The German tank Problem

@ The allies were particularly worried about the
number of Panzer V tanks in the German army
(particularly before D-day)

() Intelligence reports put the number of Panzer
V tanks produced per month to be around
1400 (from 1940-1042)

@ The Statistical branch of the British RAF was
tasked with the problem of figuring out the
problem.

() All they had to go on were a small number of
serial numbers of chassis, gearboxes, and road
wheels (stupidly the g¢ermans numbered them
sequentially)




<<<>>>Why Statistical Inference is Important

The German tank Problem

@ The boffins came up with an estimate of 46 tanks per month for
the period between June 1940- September 1942

After the war ended, captured german records from the ministry
of Albert Speer revealed that the actual number was 2495
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W/wtt is statistical ﬂnj[e’zence



<Q> What 1s Statistical Inference

@ Statistical Inference is a method of analyzing data in order to

1. Make decisions
2. Learn something about the process producing the data,
3. Make predictions about future data

A key ingredient in Statistical inference is the concept of a
random variable

Definition: Let A be a set (discreet or continuous). A random
variable, X, is a function that assigns a value, x, to each element in
A. Each value, x, occurs with some probability p(x).



<<Q>> What 1s Statistical Inference

@ The value, x, of a random variable, X, is often called a realization
of the random variable (or a sample of the random variable)

0<px)<1 VzeX and Zp(a:)zl
reX

@ A realization of size N is denoted as x := (z1,...,2n5) € X

Iffor x € X", p(x;) =p(z;), Vr;, r; € X,and the value of T is
independent of all previous realizations then we say that X is
independent and identically distributed (iid).



<Q> What 1s Statistical Inference

Examples of Random Variables

@ Tossingacoin: X = {0,1}, X ~ ¢, X isiid
Measuring the period of a pendulum: X = R*, X ~ N (y, o), X is iid

@ Sampling without replacement: X; = {R, G}, X; ~ 1/2
Xo = {R, G},XQ ~ 1/2 — €, not 1id
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qupotfzesis V) esting and P arameter Estimation



<<Q>> Binary hypothesis testing

@ Suppose that we have a Binary random variable X < {0,1} which is
known to be distributed either according to X ~ Bin(1,p) or X ~ Bin(1,¢q)

We call X ~ Bin(1,p) the null hypothesis (H,), and X ~ Bin(1,q) the
alternative hypothesis (H)

@ Given a realization of the iid random variable X < {0, 1} determine
which of the two hypothesis is true



<<<}>> Binary hypothesis testing

Definition: A decisionrule f : X*" — {Hy, H}
is a rule that decides whether we accept or
reject a hypothesis.

©® The outcome f(x) € {Hy, H;} is our
decision as to the underlying hypothesis
given we observe x € X<V




<<<}>> Binary hypothesis testing

Definition: A decisionrule f : X*" — {Hy, H}
is a rule that decides whether we accept or
reject a hypothesis.

() Accepting [ when Hyis true is called a
type-I error (or a false positive)




<Q> Binary hypothesis testing

Definition: A decision rule f : X*" — {Hy, H,}
is a rule that decides whether we accept or
reject a hypothesis.

Accepting /1, when Hyis true is called a
type-I error (or a false positive)

@ Accepting H,when H,is true is called a
type-II error (or a false negative)

True H() Hl
Guess
H 0 1 —a B
H, « 1-f




<Q> Binary hypothesis testing

Definition: A decisionrule f : X*" — {Hy, H,}
is a rule that decides whether we accept or
reject a hypothesis.

Accepting /1, when Hyis true is called a
type-I error (or a false positive)

@ Accepting H,when H,is true is called a
type-II error (or a false negative)

Rejecting [, when H, is true is the power
of our decision.

True H() Hl
Guess
H 0 1 —a B
H, «1-f
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We seek the decision rulef : X*" — {Hy,, H;}
than maximizes the power for a fixed rate

of false positives

Neyman-Pearson: The optimal decision rule

is maximum-likelihood

e p(x

_ o p(X
either if &2

p(x

Binary hypothesis testing

True H() Hl
Guess
H 0 1 —a B
H, o« 15

and 1-a= Y p(x|Ho) with A(n) = {x e XV |p(x|Ho) > np(x|H;)}

x€A(n)




<Q> Binary hypothesis testing

Tossing a Coin

@ Suppose that all €2 coins look identical

) Suppose that all €2 coins are minted either)
in Spain (H) or in Greece (H).

@ Suppose that 65% of all €2 coins are
minted in Spain and 35% in Greece

What's the most you ever lost on a coin toss?

) A coin coss corresponds to the iid binary
random variable X € {0,1}with

p(z|Ho) =a or p(z|Hi)="b



<Q> Binary hypothesis testing

Tossing a Coin

Correctly identify the coin after a finite
number of tosses

@ Mathematically the goal is captured by the
average probability of success

Ps = Pr(Hy|Hy) 7o + Pr(H,|Hy) m

What's the most you ever lost on a coin toss?

() Or equivalently

Pp = Pr(H;|Hy) 7o + Pr(Ho|Hy) m



<Q> Binary hypothesis testing

Tossing a Coin

@ Observe that for this game type-I and type-
II errors are penalised equally (symmetric
Hypothesis testing)

7 Given a realization x € X *~ how do you
maximize the probability of success?

What's the most you ever lost on a coin toss?




<Q> Binary hypothesis testing

Tossing a Coin

@ Observe that for this game type-I and type-
II errors are penalised equally (symmetric
Hypothesis testing)

7 Given a realization x € X *~ how do you
maximize the probability of success?

What's the most you ever lost on a coin toss?

H, ifmop(x|Hp) > mip(x|H1)
f(x) = Hi ifmop(x|Ho) < mip(x|H1)
either ifmop(x|Hy) = mip(x|H1)




<Q> Binary hypothesis testing

Tossing a Coin

@ The probability that you win is

1

Pp = 5 (1 — HP07To — P17T1H)

where
DL — (p(O Hk)
p(1{Hy) | |
What's the most you ever lost on a coin toss?

and

1H | 1EﬁI(IH) (x| H1)m]

— TmTn — _— — X —

2]Doo P171 QGXpr 0)70 — P\X|111 )T

is the trace-norm distance



<<Q>> Binary hypothesis testing

@ As the number of observations increases the probability of
making an error satisfies

F@;mJe_”N

The rate r depends on the scenario

1. Symmetric Hypothesis Testing
r=— min log (Z p(z|Ho)* p(z|Hy)' ™ ) Chernoff rate

0<A<1
re X

2. Asymmetric Hypothesis Testing

H
r = ;E;(p(ﬂHo) log (ig Hi;) = D(po||p1) Stein rate

1. Cover T. & Thomas J. Elements of Information Theory




<Q> Parameter Hstimation

@ What if the number of hypothesis form a continuous set © C R %
1. Xe{0,1}, X ~Bin(1,0), 6 € (0,1)

2. XeR, X~N(uo), peR, ocelRy

Our realizations, x € X are distributed according to

1—60 itax=0
) —
1. p(x|0) {9 1
B 1 (il?-@l)z
2. p(elt) = 5 e ()

@ Our aim is to determine the parameter(s) § ¢ ©, based on our
observations



<<Q>> Parameter Hstimation

The Frequentists The Bayesians
@ There is one and only one true value O isitself a random variable
0 € B

The distribution of this RV is
subjective
I will focus mostly on the frequentist approach as it is the most widely used
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@ There is one and only one true value O isitself a random variable
0 € B

The distribution of this RV is
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But I am not a frequentist



<<Q>> Parameter Hstimation

The Frequentists The Bayesians
@ There is one and only one true value O isitself a random variable
0 € B

The distribution of this RV is
subjective
I will focus mostly on the frequentist approach as it is the most widely used

But I am not a frequentist

And with age.....I am slowly coming round to not being a Bayesian either...



<<Q>> Parameter Hstimation

Definition: An estimator f: X" — O is a function that assigns to
every x € X' an estimate f(x) € ©

A good estimator must satisty

(1) Unbiasedness: Our estimator must yield the true value on
average

(6) = /X AVxp(xlf) f(x) = 6

2. S.S. Wilks. Mathematical Statistics



<<Q>> Parameter Hstimation

Definition: An estimator f: X" — O is a function that assigns to
every x € X' an estimate f(x) € ©

A good estimator must satisty

(i) Consistency: It must converge to the true value in probability.
For any § > 0 and sequence of estimates f*) (x)

lim Pr(f(k)(x)—ﬁ >5> =0

k— o0

2. S.S. Wilks. Mathematical Statistics



<<Q>> Parameter Hstimation

Definition: An estimator f: X" — O is a function that assigns to
every x € X' an estimate f(x) € ©

A good estimator must satisty
(iii) Precision
Cov(P = [ d¥x(f(0) = 63) (i) — 10

XN

The Covariance matrix must be small (in some norm)

2. S.S. Wilks. Mathematical Statistics



<<Q>> Parameter Hstimation

Definition: An estimator f: X" — O is a function that assigns to
every x € X' an estimate f(x) € ©

A good estimator must satisty

(iv) Efficiency: For any other estimator ¢g: X" — © it holds

Cov(f)Cov '(g) < 1

2. S.S. Wilks. Mathematical Statistics



<<Q>> Parameter Hstimation

Crameér-Rao: Let X ~ p(z|0). For any unbiased estimator . XV — 6
it holds

Cov(f) = F~[p(x|0)

where F|p(z|0)] is the matrix

_ 1 dp(z|0) dp(z|6)
I R T

2. S.S. Wilks. Mathematical Statistics



<<Q>> Parameter Hstimation

Crameér-Rao: Let X ~ p(z|0). For any unbiased estimator . XV — 6

it holds
Cov(f) = F~'[p(x]0)
where F|p(z|0)] is the matrix
Bp(e0)] = [ do- L e10) 0cl0
Remarks:
1. The matrix inequality is to be understood as

v (Cov(f) — F[p(z]0)]) - v >0 Vv € RI®

2. S.S. Wilks. Mathematical Statistics



<<Q>> Parameter Hstimation

Crameér-Rao: Let X ~ p(z|0). For any unbiased estimator . XV — 6

it holds
Cov(f) > F~'[p(z|0)]
where F|p(z|0)] is the matrix
| _ 1 dp(z|@) dp(x|0)
I R e
Remarks:

2. The Fisher Information matrix can also be written as the
covariance of the score function

F i [p(«]0)] := /X dzp(a H)dlogégix\ﬁ)) dlog((i];ix\ﬁ))

2. S.S. Wilks. Mathematical Statistics




<<Q>> Parameter Hstimation

Crameér-Rao: Let X ~ p(z|0). For any unbiased estimator . XV — 6

it holds
Cov(f) > F~'[p(z|0)]
where F|p(z|0)] is the matrix
| _ 1 dp(z|@) dp(x|0)
I R e
Remarks:

2. The Fisher Information matrix quantifies the susceptibility of
the score function with respect to the parameter ¢ c 6

2. S.S. Wilks. Mathematical Statistics



<<Q>> Parameter Hstimation

Exercises:

1. Binomial Distribution

2. Normal Distribution
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Quantum qu,mt[zesis /. esting and Parameter Estimation
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p(z]0) = tr (E;p(0))
{E,>0] ) E, =1}

U Quantum /i Aea’zy we can make many[est any p’zababi/éty

distribution we so desite



<Q> Quantum Hypothesis Testing

State Discrimination

@ Suppose that a friend prepares a spin- /2
particle in one of two possible states |o), [¥1)

But they forgot which state they prepared
1t In

@ All they know is that their equipment
prepares |vo) with probability 7o and |1)
with probability 71

Your job is to figure out the identity of the
state



<Q> Quantum Hypothesis Testing

State Discrimination

@ The probability of error is still the same as

before .
Pr = 5 (1 — HP07T0 —P17T1H)
L == S |p(xHo)mo — p(x|Hy)m|
_ — — — X — X
5 Po7To — P171 5 P P 0)7To — P 1)71

only this time

p(f HO) — tr(E:r; %><¢0 ) — <¢O Ea? ¢O>
p(z|Hy) = tr(Ey [¥1)(¥1]) = (1| Ez|v1)

The optimal decision rule is again
maximum likelihood




<Q> Quantum Hypothesis Testing

State Discrimination
A little bit of algebra, gives

1

: (1 — Ztr\Eaz (|%0)(Yo| ™o — |¢1)(¥1]| 71)]

T2
=0

1

_ 2 (1 —tr > Eu| (J¢ho) (o mo — [91) (1| ™))

2
=0

1

=3 (L + [[ 190) (0| mo — [th1) (1] m1]])




<<Q>> Quantum Hypothesis Testing

State Discrimination

% (1 —tr Yy Eu| (Jtho) (ol w0 — [11) (¥1 771))

=0

The optimal measurement consists of
projectors onto the +ve and -ve eigenspaces of

' := |10)(Yo| mo — |¢1)(¥1] m
and

0| = %tr (V)

is the trace-distance
3. C. W. Helstrom. Quantum Detection and Estimation Theory




<Q> Quantum Hypothesis Testing

Holevo’s Conditions: Let {7, pr}1—; be the set of states we wish to
discriminate. The POVM {FE. > 0| Z E, = 1} is optimal if and only if
k

I'—mepr >0 VEe{l,...,n}
=Y 7ok Ex
k

The corresponding probability of success is given by

PS — trl’



<Q> Quantum Hypothesis Testing

Holevo’s Conditions: Let {7, pr}1—; be the set of states we wish to
discriminate. The POVM {FE. > 0| Z E, = 1} is optimal if and only if
k

I'—mepr >0 VEe{l,...,n}

' = Z?Tkﬂk Ey,
k

The corresponding probability of success is given by

PS — trl’

. YOU can very easily prove this theorem yourselves.
(Physicsits) This is a Lagrange multipliers problem. (Everyone else)

This is a Semi Definite Program
4. A.S. Holevo. Probabilistic and Statistical Aspects of Quantum Theory




<<Q> Quantum Statistical Inference

Quantum Cramer-Rao

| L 1 dp(x|0) dp(x|0)
Again we substitute

p(x|0) = tr (E.p(0))

SO that

(0

5. M. G. A. Paris. Int. Jour. Quantum. Info. ? (suppOl), 125
6. J.S. Sidhu & P. Kok. AVS Quantum Science. &, 014701




<<Q>> Quantum Statistical Inference

Quantum Cramer-Rao

The Symmetric Logarithmic Derivative

do; 2
Doing a bit of algebra, gives

dp(@)  Lg;p(0) + p(0)Le, Lo, € Herm(H)

dp(w\.e) = Re (tr (E; Lo, p(0)))

do,

5. M. G. A. Paris. Int. Jour. Quantum. Info. ? (suppOl), 125
6. J.S. Sidhu & P. Kok. AVS Quantum Science. &, 014701




<<Q>> Quantum Statistical Inference

Quantum Cramer-Rao

Fjklp(x]0)] := /X dxp(afl\é’) dp(ggle) dpézi@

Plugging it all in and using the Schwarz inequality yields the
Quantum Fisher Information (QFI)

Fijlp(0)] = tr (Lo,p(8) Lo, )
and the Quantum Cramer-Rao bound

Cov(f) = F~'[p(x|0] > F[p(0)]

5. M. G. A. Paris. Int. Jour. Quantum. Info. ? (suppOl), 125
6. J.S. Sidhu & P. Kok. AVS Quantum Science. &, 014701




<Q> Quantum Statistical Inference

Cov(f) > F ' [p(x]6] > F~[p(0)

1. For each parameter ¢, € © the measurement that saturates the
QFI F;,(p(0)] is a projective measurement on the eigenspaces of
the SLD ng

&. Unlike the classical case the multi-parameter Quantum Cramer-
Rao bound is not always achievable

[Lew Lej] # 0

3. A necessary and sufficient condition for attainability is
tr ([LQ,,;, LQj]IO(H)) =0



<Q> Quantum Statistical Inference

Geometric Interpretion of the QFI

1. Maximize the Fisher Information over all allowable
measurements

Flp(0)] = R :]I}F[p(l‘\H)]

2. It is the infidelity between two infinitesimally close states

Flo(0)) =8 L LOLOTDD iy ) =y [0 v

4. Its square root is proportional to the susceptibility of the Bures

Angle 1
FEp(6)] = 2 (A(p(@), 2599 + d6))

) A(p(0),p(6 4 dB)) = cos™ (F(p(0), p(6 + d6)))



<Q> Quantum Statistical Inference

The case of Pure States

@ Suppose we wish to estimate the angle ¢ € (0, )
encoded in the state of a spin- /2 system

Observe that p(0) = |v(0))(x(0)| = p(#)* SO that

PO = 200 = L 00) + o)

dp(6 Lg.p(6 0)Lg.
@ Recalling that p(9) = 0,010) + pO) Lo, it

follows that 40 .

o = 2900 o (A2 0) 4 oy )




<Q> Quantum Statistical Inference

The case of Pure States

Thus, the QFI is
F(p(0)) = tr (Lop(6)Lo)

4 (<¢(9)\¢(9)> + (<¢<9)¢(9)|)>2)

@ If furthermore, we notice that

0O = (Smdls ) 0 = e

sinf/2  cos9/2

Then
F(p(8)) = (0]o;|0) — (0]a,]0)* = A%0,



&



<<Q>> Interferometry

@ This is the Mach-Zehnder interferometer

Its the device we use to detect
gravitational waves...

@ ...in fact you can trace the origins of
quantum parameter estimation to this
device

Let’s go ahead and analyze it

7. C.M. Caves. Phys. Rev. D, 3, 1693



<Q> Interferometry

@ The device is set up so that the path
length between the two arms is identical

Each beam-splitter enacts the
transformation b

1 I -1
os = 75 (4 1)

@ Both mirrors together perform the
transformation

0 1
UM_1<1 0)



<Q> Interferometry

S0 the entire device is mathematically
described by a

we= (5 0) (o) (i d)-r e

@ Ifyou insert light in port a it will always ”
come out towards detector Do

and if you always insert light in port b it
will always come out towards detector D;



<<Q>> Interferometry

@ Now suppose we change the length of the
lower path a

This change translates to the light going
down that path acquiring an additional
phase ¢

1
@ Mathematically, this is described by the V2 ( '

unitary operator

1 0
U9 o (O e—inQ)



<<Q>> Interferometry

Now the action of our Mach-Zehnder
interferometer is described by a

(D 66D HC
b

.0 [ COS g S11 g
— € 2 . 0 0
—sln 5 COS 5

2 2

)
— 61§O'y

@ We immediately know that for a single
photon

F(p(0)) = (0lo,0) — (0]oy|0)* = A%0,



<Q> Interferometry

- If we repeat the experiment under
identical conditions then a

F(p0)®") =nF(p0) e

@ and our error according to Cramer-Rao is ©

1 1
02 L F @)~ n

This is what is known as the Standard
Quantum Limit



<<Q>> Interferometry

©® Now lets use the same n resources a bit

differently _
Instead of using the MZ device
sequentially n times....

—

) .
\ '
Ii-

—



<<Q>> Interferometry

©® Now lets use the same n resources a bit

differently _

Instead of using the MZ device

sequentially n times....
@ Letsuse all n times at once

- 0 n (7) _UMZ
U]@\}% — 615 j=1%y

Observe that the Hamiltonian :

Ii-

=1 MZ

has n+1 distinct eigenvalues A\, =n -2k k€ (0,...,n)



<<Q>> Interferometry

@ The QFI is
Flo(0)] = (| H|w) — (4| H|y)? _
except now have the variance of H =) o). _
j=1
+ . . . —Uniz
- We want to maximize this variance so we .
best pick
1 Amax) = | +1)%" .
) = = (M) + i) M) = | — §)E7




<Q> Interferometry

@ The QFI now reads

Flp0)] = (W[H?|[) — (Y|H[)* = n’ _
' SO our error becomes —
1 1 [/
—fre
— F((0)  n?
quadratically smaller as compared to .

\ '
Ii-

—_—
This is known as the Heisenberg Limit

betore



<Q> Some more applications

Hypothesis Testing Parameter Estimation

@ The capacity of a channel to carry @ Atomic clocks

classical (quantum information)
Magnetimetry

Security in Quantum Cryptography
@ Accelerometers/gravimetry

@ Entanglement detection
Thermometry

Quantum Radars and Lidars
@ Quantum Imaging/super-resolution

@ Distinguishing ground states of
Hamiltonians across a phase Spectrometry
transition
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<<Q>> Thank you j[O’Z your attention
ORalo
R
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mskotiniotis@onsager.ugr.es
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