
Classical and Quantum Statistical Inference (and a
bit more)

M. Skotiniotis∗

1 Classical Hypothesis Testing

Exercise 1

For the coin example given in the lectures compute the following;

(i) The likelihood for each hypothesis given that the first coin toss comes out heads

(ii) Determine the average probability of success

(iii) Determine the Stein error rates

Exercise 2

The p-value is defined as the probability of observing an extreme value of some statistic given that the
null hypothesis holds true. P-values play a vital role in scientific discoveries, and you may know them
better as the “five sigma rule”: if p ≤ 0.05 then the null hypothesis is rejected. The mathematical
definition of a p-value is as follows. Let t be a realization. Assuming that the null hypothesis is true
the right and left p-values are

pR := Pr(X ≥ t|H0)

pL := Pr(X ≤ t|H0) ,
(1)

whereas the symmetric p-value is defined as

pS := 2min{pL, pR}. (2)

Consider the following hypothesis testing scenario. A coin is tossed and we are to decide whether
the coin is fair or not.

(i) The coin is thrown 100 times, 60 of which turn out to be heads. Determine the symmetric p-value
and whether the null hypothesis is true.

(ii) The 101st coin toss comes up heads. What is the p-value now? Do you accept or reject the null
hypothesis

(iii) The 102nd coin toss comes up tails. What is the symmetric p-value now? Do you accept or reject
the null hypothesis.
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Exercise 3

Let X ∈ R and consider N independent and identically distributed samplings from X. The critical
region of size N , CN , consists of all realizations x ∈ XN that lead us to reject the null hypothesis, i.e.,

CN := {x ∈ R | f(x) = H1}. (3)

(i) Assume that under the null hypothesis X is normally distributed with mean µ0 and variance σ2,
whereas under the alternative hypothesis X is normally distributed with mean µ1 and variance
σ2 with µ1 > µ0. Consider the likelihood ratio statistic,

t =
p(x|H1)

p(x|H0)
. (4)

Determine the critical region defined by t ≥ 0.05.

(ii) Repeat the above calculation assuming that under the null hypothesis X follows a Poisson distri-
bution with mean µ0, whereas under the alternative hypothesis X follows a Poisson distribution
with mean µ1 (again µ1 > µ0).

2 Classical Parameter Estimation

Exercise 4

(i) Consider the exponential distribution p(x |λ) = λe−λx. Suppose we take a sample of size n.
Determine the maximum likelihood estimate for λ. Check whether it is unbiased.

(ii) Let X be a normally distributed random variable. Find the maximum likelihood estimates for
the mean, µ, and variance σ2. Check whether these are unbiased estimates.

Exercise 5

(i) Compute the Fisher information of the Bernoulli distribution with parameter p

(ii) Compute the Fisher information matrix for the exponential distribution p(x |λ) = λe−λx.

(iii) Compute the Fisher Information matrix of the normal distribution.

3 Quantum Parameter Estimation

Exercise 6

Consider the set of qubit pure states that lie in the equator of the Bloch sphere, i.e., states with Bloch
vector vT = (vx, vy, 0).

(i) Write the components of the vector in terms of the azimutal angle ϕ.

(ii) Show that the operator Lϕ can be written in the form

Lϕ = a1l+ b · σ (5)

where a is a scalar, and b is a 3-D vector.

(iii) Show that the b = dv
dϕ

− av.

(iv) Compute the Quantum Fisher Information, Fϕ.

(v) Show that measuring the orthogonal bases {|+⟩, |−⟩}, the Fisher Information of the probability
distribution of the outcomes is equal to the Quantum Fisher Information.
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Solutions to the Exercises

Solution 1

(i) Recall that the probability distributions for each hypothesis were

p(heads|H0) = 0.53, p(tails|H0) = 0.47

p(heads|H1) = 0.59, p(tails|H1) = 0.41,

and that each hypothesis occurs with prior probability η0 = 0.65, η1 = 0.35. The likelihood
function ℓ(x|Hk) is thus

ℓ(0|H0) = 0.53, ℓ(0|H1) = 0.59.

(ii) The average probability of success is given by

PS =
1

2

(
1 +

1

2
∥p0 η0 − p1η1∥

)
=

1

2

(
1 +

1

2
(|0.53 ∗ 0.65− 0.59 ∗ 0.65|+ |0.47 ∗ 0.35− 0.41 ∗ 0.35|)

)
= 0.515

(iii) The Stein error rate is given by the relative entropy between p0 and p1 specifically

D(p0∥p1) = 0.53 log2
0.53

0.59
+ 0.47 log2

0.47

0.41
= 0.0106

Solution 2

(i) We compute

pR =
1

2100

100∑
n=60

(
100

x

)
= 0.02844 =

1

2100

40∑
n=0

(
100

x

)
= pL

Hence the symmetric p value is

pS = 2 ∗ 0.02844 = 0.0568

and we accept the fair coin hypothesis.

(ii) We now obtain the following

pR =
1

2101

101∑
n=61

(
101

x

)
= 0.023022 =

1

2101

40∑
n=0

(
101

x

)
= pL

and the p value now is pS = 0.0460. So a single coin toss later we are now lead to the rejection
of the hypothesis.
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(iii) We now compute

pR =
1

2102

102∑
n=61

(
102

x

)
= 0.0297 =

1

2102

41∑
n=0

(
102

x

)
= pL

and the corresponding p value now reads p = 0.594. After yet another coin toss we are now lead
to accepting the fair coin hypothesis.

This is an example of what is known as p-hacking, and why you should be very skeptical when people
use p-values in statistics.

Solution 3

(i) As we are dealing with normally distributed, i.i.d. random variables the statistics t is explicitly
given by

t =
e−

∑n
m=1

(xm−µ1)
2

2σ2

e−
∑n

m=1
(xm−µ0)

2

2σ2

≥ 0.05 .

Taking the natural logarithm on both sides gives

ln t = −
n∑

m=1

(xm − µ1)
2

2σ2
+

n∑
m=1

(xm − µ0)
2

2σ2
≥ ln 0.05 .

Expanding and the squares and re-arranging the above reduces to

ln t =
n∑

m=1

≥
2σ2 ln 0.0.5− n

2
(µ2

0 − µ2
1)

µ1 − µ0

Dividing by the number of samples n and recalling that 1
n

∑n
m=1 xm = E[x] we finally arrive at

1

n
ln t = E[x] ≥

2σ2 ln 0.0.5− n
2
(µ2

0 − µ2
1)

n(µ1 − µ0)
. (6)

Hence our critical region consists of all n-dimensional vectors x whose average satisfies the in-
equality in Eq. (6).

(ii) Recalling that the Poisson distribution is given by

P (x, µ) =
µxe−µ

x!

a similar computation to the one of (i) yields

1

n
ln t = E[x] ≥ ln 0.05 + (µ1 − µ0)

n(lnµ1 − lnµ0)
. (7)

Hence our critical region consists of all n-dimensional vectors x whose mean value satisfies the
inequality in Eq. (7).
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Solution 4

(i) The likelihood, is

ℓ (λ |x1, . . . , xn) =
n∏

i=1

(
λe−λxi

)
= λn exp

(
−λ

n∑
i=1

xi

)
= λn exp(−nλx̄) .

From which one gets the following expression for the log-likelihood

ln ℓ = n lnλ− nλx̄ ,

and so
d ln ℓ

dλ
=

n

λ
− nx̄ .

It follows that ln ℓ (and hence ℓ) has a unique maximum at λ̂ = 1/x̄ and this is therefore the
maximum likelihood estimator of λ.

(ii) Computing E
[
λ̂MLE

]
one obtains

E
[
λ̂MLE

]
=

∫
Rn
+

n∑n
i=1 xi

λne−λ
∑n

i=1 xidnx. (8)

Inserting the identity ∫ ∞

0

δ (
∑n

i=1 xi − w) dw = 1, (9)

where δ(x) is the Dirac delta distribution, into Eq. (8) we have

E
[
λ̂MLE

]
= nλn

∫ ∞

0

e−λw

w
dw

∫
Rn
+

δ (
∑n

i=1 xi − w) dnx.

Now rescale xi as xi = wyi, so that dnx = wndny, and

E
[
λ̂MLE

]
= nλn

∫ ∞

0

wn−1e−λwdw

∫
Rn
+

δ [w (
∑n

i=1 yi − 1)] dny

= nλn

∫ ∞

0

wn−2e−λwdw

∫
Rn
+

δ (
∑n

i=1 yi − 1) dny

= n(n− 2)!λ vol(∆n),

where vol(∆n) is the volume of the simplex ∆n = {(y1, . . . , yn) |
∑n

k=1 yk = 1}. Using the identity
in Eq. (9) and the fact that the exponential distribution is a bona fide distribution we obtain

1 =

∫
Rn
+

λne−λ
∑n

i=1 xidnx

= λn

∫ ∞

0

wn−1e−λwdw

∫
Rn
+

δ (
∑n

i=1 yi − 1) dny

= (n− 1)! vol(∆n).

Hence vol(∆n) = 1/(n− 1)! and

E
[
λ̂MLE

]
=

n(n− 2)!

(n− 1)!
λ =

n

n− 1
λ.

It follows that λ̂MLE is not unbiased for any finite sample but the estimator is asymptotically
unbiased.
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Solution 5

(i) For the Bernouli distribution of a single parameter the Fisher Information is

F (p) =
12

p
+

(−1)2

1− p
=

1

p(1− p)
.

Notice that the Fisher information is inversely proportional to the variance of the Bernouli dis-
tribution.

(ii) For the exponential distribution of a single parameter, the Fisher Information reads

F [λ] =
1

λ

∫ ∞

0

e−λx(1− λx)2 dx =
1

λ2
.

(iii) The normal distribution has two variables, µ and σ2. We thus need to build the Fisher information
matrix whose elements are

Fij =

∫ ∞

−∞
p(x|µ, σ2)

(
∂p(x|µ, σ2

∂µ

)(
∂p(x|µ, σ2

∂σ2

)
dx .

Computing the matrix elements results in

F (µ, σ2) =

(
1
σ2 0
0 1

2σ4

)

Solution 6

(i) Using polar coordinates any vector can be written as r = (sin θ cosϕ, sin θ sinϕ, cos θ) where
θ ∈ (0, π), and ϕ ∈ (0, 2π). Given that v = (vx, vy, 0)

T , it follows that θ = π
2
and hence

vx = cosϕ

vy = sinϕ

(ii) Since Lϕ is a linear operator acting on H2 it can be expanded in terms of the operator basis
{σi}3i=0 as

Lϕ =
∑
i

Tr(σi Lϕ)σi

Using the fact that σ0 = 1l and defining a = TrLϕ and b = (Tr(σ1Lϕ), Tr(σ2Lϕ), Tr(σ3Lϕ)) gives
the final result.

(iii) For the definition of the SLD we have

dρ

dϕ
=

1

2
(Lϕρ+ ρLϕ) . (10)

Using the Bloch representation of ρ and the solution of (i) it follows that

dρ

dϕ
=

d

dϕ

(
1l+ v · σ

2

)
=

1

2

dv

dϕ
· σ , (11)
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with
dv

dϕ
= (− sinϕ, cosϕ, 0) .

Therefore Eq. (10) reads

2
dv

dϕ
· σ = (a1l+ b · σ)(1l+ v · σ) + (1l+ v · σ)(a1l+ b · σ)

= 2a1l+ 2(b+ av) · σ +
∑
ij

(bivj + bjvi)σiσj

= 2(a+ b · v)1l+ 2(b+ av) · σ ,

where in the last line we have used the identity of Eq. (??). It follows that a + b · v = 0 and
b+ av = dv

dϕ
. Since v · dv

dϕ
= 0, the second condition implies the first one and b = dv

dϕ
− av for any

a. Hence, the SLD is not uniquely defined:

Lϕ = a1l+ (
dv

dϕ
− av) · σ for any a ∈ R .

(iv) The Quantum Fisher Information is given by

Fϕ = Tr(L2
ϕρ)

= Tr

(
(a1l+ (

dv

dϕ
− av) · σ)2(1l+ v · σ

2
)

)
= a2 +

dv

dϕ
· dv
dϕ

+ a2v · v + 2a(
dv

dϕ
− av) · v

=
dv

dϕ
· dv
dϕ

= 1

(v) The probability distribution we obtain if we perform the a measurement in the |±⟩ basis is given
by

p(±|ϕ) =

{
cos2 ϕ

2
for +

sin2 ϕ
2

for −
(12)

Computing the Fisher information for this probability distribution gives

F (p(±|ϕ) =

(
d
dϕ
p(+|ϕ)

)2
p(+|ϕ)

+

(
d
dϕ
p(−|ϕ)

)2
p(−|ϕ)

= sin2 ϕ

2
+ cos2

ϕ

2
= 1

The same as the quantum Fisher information. Hence this measurement is optimal.
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