Classical and Quantum Statistical Inference (and a bit more)

M. Skotiniotis*

1 Classical Hypothesis Testing

Exercise 1

For the coin example given in the lectures compute the following;

- (i) The likelihood for each hypothesis given that the first coin toss comes out heads
- (ii) Determine the average probability of success
- (iii) Determine the Stein error rates

Exercise 2

The p-value is defined as the probability of observing an extreme value of some statistic given that the null hypothesis holds true. P-values play a vital role in scientific discoveries, and you may know them better as the "five sigma rule": if $p \leq 0.05$ then the null hypothesis is rejected. The mathematical definition of a p-value is as follows. Let t be a realization. Assuming that the null hypothesis is true the right and left p-values are

$$p_R := \Pr(X \ge t | H_0)$$

$$p_L := \Pr(X \le t | H_0),$$
(1)

whereas the *symmetric* p-value is defined as

$$p_S := 2\min\{p_L, \, p_R\}. \tag{2}$$

Consider the following hypothesis testing scenario. A coin is tossed and we are to decide whether the coin is fair or not.

- (i) The coin is thrown 100 times, 60 of which turn out to be heads. Determine the symmetric p-value and whether the null hypothesis is true.
- (ii) The 101st coin toss comes up heads. What is the p-value now? Do you accept or reject the null hypothesis
- (iii) The 102nd coin toss comes up tails. What is the symmetric p-value now? Do you accept or reject the null hypothesis.

^{*}Email: mskotiniotis@onsager.ugr.es

Exercise 3

Let $X \in \mathbb{R}$ and consider N independent and identically distributed samplings from X. The *critical* region of size N, C_N , consists of all realizations $\boldsymbol{x} \in X^N$ that lead us to reject the null hypothesis, i.e.,

$$C_N := \{ \boldsymbol{x} \in \mathbb{R} \mid f(\boldsymbol{x}) = H_1 \}. \tag{3}$$

(i) Assume that under the null hypothesis X is normally distributed with mean μ_0 and variance σ^2 , whereas under the alternative hypothesis X is normally distributed with mean μ_1 and variance σ^2 with $\mu_1 > \mu_0$. Consider the likelihood ratio statistic,

$$t = \frac{p(\boldsymbol{x}|H_1)}{p(\boldsymbol{x}|H_0)}.$$
 (4)

Determine the critical region defined by $t \ge 0.05$.

(ii) Repeat the above calculation assuming that under the null hypothesis X follows a Poisson distribution with mean μ_0 , whereas under the alternative hypothesis X follows a Poisson distribution with mean μ_1 (again $\mu_1 > \mu_0$).

2 Classical Parameter Estimation

Exercise 4

- (i) Consider the exponential distribution $p(x \mid \lambda) = \lambda e^{-\lambda x}$. Suppose we take a sample of size n. Determine the maximum likelihood estimate for λ . Check whether it is unbiased.
- (ii) Let X be a normally distributed random variable. Find the maximum likelihood estimates for the mean, μ , and variance σ^2 . Check whether these are unbiased estimates.

Exercise 5

- (i) Compute the Fisher information of the Bernoulli distribution with parameter p
- (ii) Compute the Fisher information matrix for the exponential distribution $p(x \mid \lambda) = \lambda e^{-\lambda x}$.
- (iii) Compute the Fisher Information matrix of the normal distribution.

3 Quantum Parameter Estimation

Exercise 6

Consider the set of qubit pure states that lie in the equator of the Bloch sphere, i.e., states with Bloch vector $\mathbf{v}^T = (v_x, v_y, 0)$.

- (i) Write the components of the vector in terms of the azimutal angle ϕ .
- (ii) Show that the operator L_{ϕ} can be written in the form

$$L_{\phi} = a \mathbb{1} + \mathbf{b} \cdot \boldsymbol{\sigma} \tag{5}$$

where a is a scalar, and \mathbf{b} is a 3-D vector.

- (iii) Show that the $\mathbf{b} = \frac{d\mathbf{v}}{d\phi} a\mathbf{v}$.
- (iv) Compute the Quantum Fisher Information, \mathcal{F}_{ϕ} .
- (v) Show that measuring the orthogonal bases $\{|+\rangle, |-\rangle\}$, the Fisher Information of the probability distribution of the outcomes is equal to the Quantum Fisher Information.

Solutions to the Exercises

Solution 1

(i) Recall that the probability distributions for each hypothesis were

$$p(\text{heads}|H_0) = 0.53, \quad p(\text{tails}|H_0) = 0.47$$

 $p(\text{heads}|H_1) = 0.59, \quad p(\text{tails}|H_1) = 0.41,$

and that each hypothesis occurs with prior probability $\eta_0 = 0.65, \eta_1 = 0.35$. The likelihood function $\ell(x|H_k)$ is thus

$$\ell(0|H_0) = 0.53, \quad \ell(0|H_1) = 0.59.$$

(ii) The average probability of success is given by

$$P_S = \frac{1}{2} \left(1 + \frac{1}{2} || p_0 \eta_0 - p_1 \eta_1 || \right)$$

$$= \frac{1}{2} \left(1 + \frac{1}{2} (|0.53 * 0.65 - 0.59 * 0.65| + |0.47 * 0.35 - 0.41 * 0.35|) \right)$$

$$= 0.515$$

(iii) The Stein error rate is given by the relative entropy between p_0 and p_1 specifically

$$D(p_0||p_1) = 0.53 \log_2 \frac{0.53}{0.59} + 0.47 \log_2 \frac{0.47}{0.41}$$

= 0.0106

Solution 2

(i) We compute

$$p_R = \frac{1}{2^{100}} \sum_{n=60}^{100} {100 \choose x} = 0.02844 = \frac{1}{2^{100}} \sum_{n=0}^{40} {100 \choose x} = p_L$$

Hence the symmetric p value is

$$p_S = 2 * 0.02844 = 0.0568$$

and we accept the fair coin hypothesis.

(ii) We now obtain the following

$$p_R = \frac{1}{2^{101}} \sum_{n=61}^{101} {101 \choose x} = 0.023022 = \frac{1}{2^{101}} \sum_{n=0}^{40} {101 \choose x} = p_L$$

and the p value now is $p_S = 0.0460$. So a single coin toss later we are now lead to the rejection of the hypothesis.

3

(iii) We now compute

$$p_R = \frac{1}{2^{102}} \sum_{n=61}^{102} {102 \choose x} = 0.0297 = \frac{1}{2^{102}} \sum_{n=0}^{41} {102 \choose x} = p_L$$

and the corresponding p value now reads p = 0.594. After yet another coin toss we are now lead to accepting the fair coin hypothesis.

This is an example of what is known as p-hacking, and why you should be very skeptical when people use p-values in statistics.

Solution 3

(i) As we are dealing with normally distributed, i.i.d. random variables the statistics t is explicitly given by

$$t = \frac{e^{-\sum_{m=1}^{n} \frac{(x_m - \mu_1)^2}{2\sigma^2}}}{e^{-\sum_{m=1}^{n} \frac{(x_m - \mu_0)^2}{2\sigma^2}}} \ge 0.05.$$

Taking the natural logarithm on both sides gives

$$\ln t = -\sum_{m=1}^{n} \frac{(x_m - \mu_1)^2}{2\sigma^2} + \sum_{m=1}^{n} \frac{(x_m - \mu_0)^2}{2\sigma^2} \ge \ln 0.05.$$

Expanding and the squares and re-arranging the above reduces to

$$\ln t = \sum_{m=1}^{n} \ge \frac{2\sigma^2 \ln 0.0.5 - \frac{n}{2}(\mu_0^2 - \mu_1^2)}{\mu_1 - \mu_0}$$

Dividing by the number of samples n and recalling that $\frac{1}{n} \sum_{m=1}^{n} x_m = \mathbb{E}[\mathbf{x}]$ we finally arrive at

$$\frac{1}{n}\ln t = \mathbb{E}[\mathbf{x}] \ge \frac{2\sigma^2 \ln 0.0.5 - \frac{n}{2}(\mu_0^2 - \mu_1^2)}{n(\mu_1 - \mu_0)}.$$
 (6)

Hence our critical region consists of all n-dimensional vectors \mathbf{x} whose average satisfies the inequality in Eq. (6).

(ii) Recalling that the Poisson distribution is given by

$$P(x,\mu) = \frac{\mu^x e^{-\mu}}{x!}$$

a similar computation to the one of (i) yields

$$\frac{1}{n}\ln t = \mathbb{E}[\mathbf{x}] \ge \frac{\ln 0.05 + (\mu_1 - \mu_0)}{n(\ln \mu_1 - \ln \mu_0)}.$$
 (7)

Hence our critical region consists of all n-dimensional vectors \mathbf{x} whose mean value satisfies the inequality in Eq. (7).

4

Solution 4

(i) The likelihood, is

$$\ell(\lambda \mid x_1, \dots, x_n) = \prod_{i=1}^n (\lambda e^{-\lambda x_i}) = \lambda^n \exp\left(-\lambda \sum_{i=1}^n x_i\right) = \lambda^n \exp(-n\lambda \bar{x}).$$

From which one gets the following expression for the log-likelihood

$$\ln \ell = n \ln \lambda - n \lambda \bar{x} \,,$$

and so

$$\frac{\mathrm{d}\ln\ell}{\mathrm{d}\lambda} = \frac{n}{\lambda} - n\bar{x}.$$

It follows that $\ln \ell$ (and hence ℓ) has a unique maximum at $\hat{\lambda} = 1/\bar{x}$ and this is therefore the maximum likelihood estimator of λ .

(ii) Computing $\mathbb{E}\left[\hat{\lambda}_{\text{MLE}}\right]$ one obtains

$$\mathbb{E}\left[\hat{\lambda}_{\text{MLE}}\right] = \int_{\mathbb{R}^{n}_{+}} \frac{n}{\sum_{i=1}^{n} x_{i}} \lambda^{n} e^{-\lambda \sum_{i=1}^{n} x_{i}} d^{n} \mathbf{x}.$$
 (8)

Inserting the identity

$$\int_0^\infty \delta\left(\sum_{i=1}^n x_i - w\right) dw = 1,\tag{9}$$

where $\delta(x)$ is the Dirac delta distribution, into Eq. (8) we have

$$\mathbb{E}\left[\hat{\lambda}_{\mathrm{MLE}}\right] = n\lambda^{n} \int_{0}^{\infty} \frac{e^{-\lambda w}}{w} \mathrm{d}w \int_{\mathbb{R}^{n}_{\perp}} \delta\left(\sum_{i=1}^{n} x_{i} - w\right) \mathrm{d}^{n}\mathbf{x}.$$

Now rescale x_i as $x_i = wy_i$, so that $d^n x = w^n d^n y$, and

$$\mathbb{E}\left[\hat{\lambda}_{\text{MLE}}\right] = n\lambda^{n} \int_{0}^{\infty} w^{n-1} e^{-\lambda w} dw \int_{\mathbb{R}^{n}_{+}} \delta\left[w\left(\sum_{i=1}^{n} y_{i} - 1\right)\right] d^{n}\mathbf{y}$$

$$= n\lambda^{n} \int_{0}^{\infty} w^{n-2} e^{-\lambda w} dw \int_{\mathbb{R}^{n}_{+}} \delta\left(\sum_{i=1}^{n} y_{i} - 1\right) d^{n}\mathbf{y}$$

$$= n(n-2)! \lambda \operatorname{vol}(\Delta^{n}),$$

where $\operatorname{vol}(\Delta^n)$ is the volume of the simplex $\Delta^n = \{(y_1, \dots, y_n) \mid \sum_{k=1}^n y_k = 1\}$. Using the identity in Eq. (9) and the fact that the exponential distribution is a bona fide distribution we obtain

$$1 = \int_{\mathbb{R}^{n}_{+}} \lambda^{n} e^{-\lambda \sum_{i=1}^{n} x_{i}} d^{n} \mathbf{x}$$

$$= \lambda^{n} \int_{0}^{\infty} w^{n-1} e^{-\lambda w} dw \int_{\mathbb{R}^{n}_{+}} \delta\left(\sum_{i=1}^{n} y_{i} - 1\right) d^{n} \mathbf{y}$$

$$= (n-1)! \operatorname{vol}(\Delta^{n}).$$

Hence $\operatorname{vol}(\Delta^n) = 1/(n-1)!$ and

$$\mathbb{E}\left[\hat{\lambda}_{\text{MLE}}\right] = \frac{n(n-2)!}{(n-1)!}\lambda = \frac{n}{n-1}\lambda.$$

It follows that $\hat{\lambda}_{\text{MLE}}$ is not unbiased for any finite sample but the estimator is asymptotically unbiased.

Solution 5

(i) For the Bernouli distribution of a single parameter the Fisher Information is

$$F(p) = \frac{1^2}{p} + \frac{(-1)^2}{1-p} = \frac{1}{p(1-p)}.$$

Notice that the Fisher information is inversely proportional to the variance of the Bernouli distribution.

(ii) For the exponential distribution of a single parameter, the Fisher Information reads

$$F[\lambda] = \frac{1}{\lambda} \int_0^\infty e^{-\lambda x} (1 - \lambda x)^2 dx = \frac{1}{\lambda^2}.$$

(iii) The normal distribution has two variables, μ and σ^2 . We thus need to build the Fisher information matrix whose elements are

$$F_{ij} = \int_{-\infty}^{\infty} p(x|\mu, \sigma^2) \left(\frac{\partial p(x|\mu, \sigma^2)}{\partial \mu} \right) \left(\frac{\partial p(x|\mu, \sigma^2)}{\partial \sigma^2} \right) dx.$$

Computing the matrix elements results in

$$F(\mu, \sigma^2) = \begin{pmatrix} \frac{1}{\sigma^2} & 0\\ 0 & \frac{1}{2\sigma^4} \end{pmatrix}$$

Solution 6

(i) Using polar coordinates any vector can be written as $\mathbf{r} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$ where $\theta \in (0, \pi)$, and $\phi \in (0, 2\pi)$. Given that $\mathbf{v} = (v_x, v_y, 0)^T$, it follows that $\theta = \frac{\pi}{2}$ and hence

$$v_x = \cos \phi$$
$$v_y = \sin \phi$$

(ii) Since L_{ϕ} is a linear operator acting on \mathcal{H}_2 it can be expanded in terms of the operator basis $\{\sigma_i\}_{i=0}^3$ as

$$L_{\phi} = \sum_{i} \operatorname{Tr}(\sigma_{i} L_{\phi}) \, \sigma_{i}$$

Using the fact that $\sigma_0 = 1$ and defining $a = \text{Tr}L_{\phi}$ and $\mathbf{b} = (\text{Tr}(\sigma_1 L_{\phi}), \text{Tr}(\sigma_2 L_{\phi}), \text{Tr}(\sigma_3 L_{\phi}))$ gives the final result.

(iii) For the definition of the SLD we have

$$\frac{\mathrm{d}\rho}{\mathrm{d}\phi} = \frac{1}{2} \left(L_{\phi}\rho + \rho L_{\phi} \right) \,. \tag{10}$$

Using the Bloch representation of ρ and the solution of (i) it follows that

$$\frac{\mathrm{d}\rho}{\mathrm{d}\phi} = \frac{\mathrm{d}}{\mathrm{d}\phi} \left(\frac{1 + \mathbf{v} \cdot \boldsymbol{\sigma}}{2} \right)
= \frac{1}{2} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\phi} \cdot \boldsymbol{\sigma},$$
(11)

with

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\phi} = (-\sin\phi, \cos\phi, 0).$$

Therefore Eq. (10) reads

$$2\frac{d\mathbf{v}}{d\phi} \cdot \boldsymbol{\sigma} = (a\mathbf{1} + \mathbf{b} \cdot \boldsymbol{\sigma})(\mathbf{1} + \mathbf{v} \cdot \boldsymbol{\sigma}) + (\mathbf{1} + \mathbf{v} \cdot \boldsymbol{\sigma})(a\mathbf{1} + \mathbf{b} \cdot \boldsymbol{\sigma})$$
$$= 2a\mathbf{1} + 2(\mathbf{b} + a\mathbf{v}) \cdot \boldsymbol{\sigma} + \sum_{ij} (b_i v_j + b_j v_i) \sigma_i \sigma_j$$
$$= 2(a + \mathbf{b} \cdot \mathbf{v})\mathbf{1} + 2(\mathbf{b} + a\mathbf{v}) \cdot \boldsymbol{\sigma},$$

where in the last line we have used the identity of Eq. (??). It follows that $a + \mathbf{b} \cdot \mathbf{v} = 0$ and $\mathbf{b} + a\mathbf{v} = \frac{d\mathbf{v}}{d\phi}$. Since $\mathbf{v} \cdot \frac{d\mathbf{v}}{d\phi} = 0$, the second condition implies the first one and $\mathbf{b} = \frac{d\mathbf{v}}{d\phi} - a\mathbf{v}$ for any a. Hence, the SLD is not uniquely defined:

$$L_{\phi} = a \mathbb{1} + (\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\phi} - a\mathbf{v}) \cdot \boldsymbol{\sigma}$$
 for any $a \in \mathbb{R}$.

(iv) The Quantum Fisher Information is given by

$$\mathcal{F}_{\phi} = \operatorname{Tr}(L_{\phi}^{2}\rho)$$

$$= \operatorname{Tr}\left((a\mathbb{1} + (\frac{d\mathbf{v}}{d\phi} - a\mathbf{v}) \cdot \boldsymbol{\sigma})^{2}(\frac{\mathbb{1} + \mathbf{v} \cdot \boldsymbol{\sigma}}{2})\right)$$

$$= a^{2} + \frac{d\mathbf{v}}{d\phi} \cdot \frac{d\mathbf{v}}{d\phi} + a^{2}\mathbf{v} \cdot \mathbf{v} + 2a(\frac{d\mathbf{v}}{d\phi} - a\mathbf{v}) \cdot \mathbf{v}$$

$$= \frac{d\mathbf{v}}{d\phi} \cdot \frac{d\mathbf{v}}{d\phi} = 1$$

(v) The probability distribution we obtain if we perform the a measurement in the $|\pm\rangle$ basis is given by

$$p(\pm|\phi) = \begin{cases} \cos^2\frac{\phi}{2} & \text{for } + \\ \sin^2\frac{\phi}{2} & \text{for } - \end{cases}$$
 (12)

Computing the Fisher information for this probability distribution gives

$$F(p(\pm|\phi) = \frac{\left(\frac{\mathrm{d}}{\mathrm{d}\phi}p(+|\phi)\right)^2}{p(+|\phi)} + \frac{\left(\frac{\mathrm{d}}{\mathrm{d}\phi}p(-|\phi)\right)^2}{p(-|\phi)}$$
$$= \sin^2\frac{\phi}{2} + \cos^2\frac{\phi}{2} = 1$$

The same as the quantum Fisher information. Hence this measurement is optimal.